Прогнозирование надежности изделий по уровню качества технологических процессов. Прогнозирование надежности на стадии проектирования Статистические методы прогнозирования надежности машин

Надежность изделия закладывается в период конструкторской проработки его элементов с учетом анализа вероятных отказов и причин их возникновения (метод FMEA), а также в процессе отработки опытных образцов до начала серийного изготовления изделий. Отработка опытных образцов новых изделий направлена на выявление конструкторских дефектов. При этом изготовление опытных образцов производится, как правило, не по серийной технологии, а чаще всего методами индивидуальной подгонки узлов и деталей на основе маршрутных технологий.

В процессе серийного производства изделий происходит отработка качества технологических процессов. В лучшем случае, при идеальном контроле изготовленной продукции, товарные изделия не имеют технологических дефектов, и их надежность целиком определяется качеством конструкторской документации. В то же время практика показывает, что качество технологических процессов влияет на надежность изделий в виде явных (не обнаруженных контролем) и скрытых (связанных со сложностью отбраковки) дефектов или отклонений от конструкторской документации.

Уровень качества процесса изготовления г-й детали К л „ можно определить по относительному количеству дефектных деталей и деф на партию Лф фактически изготовленной по этому техпроцессу продукции

Тот же уровень качества К л „ можно определить и по экономическим показателям процесса. Допустим, что за определенный промежуток времени (например, за смену) на данном участке необходимо изготовить Л^ тов товарных деталей для комплектования какой-то сборочной единицы. Расчетная (плановая) стоимость изготовления товарных деталей Qp ac определится по формуле

где С 1Ж - расчетная (плановая) себестоимость изготовления одной детали.

Если при контроле партии изготовленных ЛГ ф деталей окажется и деф дефектных деталей, то для комплектования партии из N T0B товарных деталей придется изготовить еще такое же количество товарных деталей, которое было забраковано при контроле. Очевидно, что фактическая стоимость партии товарных деталей будет больше

расчетной стоимости партии на стоимость изготовления дефектных деталей. Тогда уровень качества процесса изготовления можно определить по формуле

где С ф - фактическая себестоимость изготовления одной детали.

Вполне возможно, что время изготовления детали увеличено за счет несоблюдения технологической дисциплины, что также приводит к удорожанию изготовленной продукции. Нас для решения поставленной задачи интересуют затраты, связанные с качеством исполнения технологического процесса, а не нарушения технологической дисциплины.

Одной из важнейших задач выпуска конкурентоспособной продукции является снижение себестоимости ее изготовления. Поэтому важно оценить, на каком этапе изготовления изделия (узла, агрегата) затраты на обеспечение его качества превышают запланированные нормативы.

Формула (2.14), как и формула (2.15), может быть использована не только для оценки качества процесса изготовления деталей, но также при выполнении любой другой технологической операции, в том числе сборочной. В последнем случае для оценки уровня качества сборочной операции K dt можно использовать следующее соотношение:

где С с6ф - соответственно расчетная (плановая) и фактическая себестоимости сборочной операции.

Оценим качество изготовления сборочной единицы на уровне комплекта. Если известны нормативные показатели по операциям сборки, то, воспользовавшись формулой (2.16), получим для уровня качества сборки комплекта К кш следующее соотношение:

где С кшрж, С кш ф - соответственно расчетная (плановая) и фактическая себестоимости сборки комплекта.

Формула (2.17) имеет отношение только к качеству процесса сборки комплекта из деталей, но не является оценкой уровня качества изготовления комплекта в целом. Для этого необходимо учесть уровень качества изготовления всех входящих в комплект деталей. Если в комплект входят только две детали с разным уровнем качества изготовления деталей К л „, то качество изготовления комплекта составит

где К жтср - средний уровень качества изготовления деталей.

Если комплекты состоят из разного количества разных видов деталей, то необходимо определить приведенный уровень качества изготовления деталей К детпр, входящих в комплект. При этом

На примере несложного комплекта выведем формулу для расчета приведенного уровня качества изготовления деталей, входящих в комплект. Пусть комплект состоит из двух видов деталей, при этом имеем первого вида т, К 1дегср, а второго вида т 2 деталей со средним уровнем качества процесса К 2жгср. Тогда

Решаем уравнение (2.21) относительно К л „ щг

Из формулы (2.21) видно, что если уровни качества процесса изготовления всех деталей одинаковы, то приведенный уровень качества изготовления деталей равен уровню качества процесса изготовления любой детали, входящей в комплект.

Аналогично рассчитываются уровни качества процесса изготовления других сборочных единиц, в том числе узлов (агрегатов). Уровень качества изготовления изделия К па, состоящего из узлов, составит

где К у:а „ (> - приведенный уровень качества изготовления узлов;

Кшд.сб - уровень качества процесса сборки изделия.

На практике при сборке изделия достаточно часто встречаются почти все элементы изделия более низкого уровня (узел, подузел, комплект, базовая деталь). Покажем, как в этом случае определяется приведенный уровень качества изготовления узла К г „„ г. Допустим, что изделие состоит из двух разных узлов (в количестве соответственно d { и d 2) и одной базовой детали. Составляем уравнение по аналогии с уравнением (2.20)

Решая уравнение, получим

Из уравнения (2.24) видно, что качество процесса изготовления деталей влияет на качество процесса изготовления изделия тем больше, чем на более высоком уровне сборки применяется эта деталь. Это означает, что на качество изготовления и контроля базовых деталей необходимо обращать особое внимание.

Если на каждом этапе (деталь, комплект, подузел, узел) производства качество изготовления элементов изделия одинаковое, то уравнение (2.22) можно переписать в следующем виде:

Если отдельные элементы изделия поставляются по кооперации, то уровень качества процесса их изготовления при расчете качества изготовления изделия следует принимать за единицу, так как истинное значение уровня их качества неизвестно. При налаженных с поставщиками комплектующих деловых связях можно провести совместную работу по оценке качества изготовления этих комплектующих.

Прогнозирование надежности изделий в процессе эксплуатации возможно при определении коэффициентов связи а между уровнем качества изготовления г-го узла К у и вероятностью безотказной работы этого же узла P(t ) в процессе эксплуатации по результатам рекламаций на товарные изделия. В этом случае прогнозируемая вероятность безотказной работы нового изделия Р кзл по результатам оценки уровня качества изготовления узлов (агрегатов) изделия имеет вид

где п - количество основных узлов (агрегатов) изделия, влияющих на его безотказную работу.

Очевидно, что при анализе значений коэффициентов связи а можно выявить наиболее слабые (опасные) места (узлы) или скрытые дефекты изделия, на которые в первую очередь необходимо обратить внимание при разработке заводской программы повышения качества продукции.

Для оценки приближения эмпирического распределения к теоретическому используется критерий согласия Романовского, который определяется по формуле:

где - критерий Пирсона;

r - число степеней свободы.

Если выполняется условие , то это дает основание для утверждения, о возможности принятия теоретического распределения показателей надежности за закон данного распределения.

Критерий Колмогорова позволяет оценить справедливость гипотезы о законе распределения при малых объемах наблюдений случайной величины

где D - максимальная разность между фактической и теоретической накопленными частотами случайной величины.

На основе специальных таблиц определяют вероятность Р того, что если конкретный вариационный признак распределен по рассматриваемому теоретическому распределению, то из-за чисто случайных причин максимальное расхождение между фактическими и теоретическими накопленными частотами будет не меньшим, чем фактически наблюдаемое.

На основе вычисленной величины Р делают выводы:

а) если вероятность Р достаточно велика, то гипотезу о том, что фактическое распределение близко к теоретическому, можно считать подтвержденной;

б) если же вероятность Р мала, то гипотеза отвергается.

Границы критической области для критерия Колмогорова зависят от объема выборки: чем меньше число результатов наблюдений, тем выше необходимо устанавливать критическое значение вероятности.

Если число отказов при наблюдении составило 10-15, то , если больше 100, то . Однако необходимо отметить, что при больших объемах наблюдений лучше пользоваться критерием Пирсона .

Критерий Колмогорова значительно проще других критериев согласия, поэтому он находит широкое применение в исследовании надежности машин и элементов.

Вопрос 22. Основные задачи прогнозирования надежности машин.

Для определения закономерностей изменения технического состояния машины в процессе работы выполняется прогнозирование надежности машин.

Различают три этапа прогнозирования: ретроспекцию, диагностику и прогноз. На первом этапе устанавливают динамику изменения параметров машины в прошлом, на втором этапе определяют техническое состояние элементов в настоящем, на третьем этапе прогнозируют изменение параметров состояния элементов в будущем.

Основные классы задач прогнозирования надежности машин могут быть сформулированы следующим образом:

    Предсказание закономерности изменения надежности машин в связи с перспективами развития производства, внедрением новых материалов, повышением прочности деталей.

    Оценка надежности проектируемой машины до того, как она будет изготовлена. Эта задача возникает на стадии проектирования.

    Прогнозирование надежности конкретной машины (узла, агрегата) на основании результатов изменения ее параметров.

    Прогнозирование надежности некоторой совокупности машин по результатам исследования ограниченного числа опытных образцов. С задачами такого типа приходится сталкиваться на этапе производства техники.

5. Прогнозирование надежности машин в необычных условиях эксплуатации (например, при температуре и влажности окружающей среды выше допустимой).

Специфика отрасли строительного машиностроения предполагает точность решения задач прогнозирования с погрешностью не более 10-15 % и использование методов прогнозирования, позволяющих получить решение задач в кратчайшие сроки.

Методы прогнозирования надежности машин выбирают с учетом задач прогнозирования, количества и качества исходной информации, характера реального процесса изменения показателя надежности (прогнозируемого параметра).

Современные методы прогнозирования могут быть разделены на три основные группы:

Методы экспертных оценок;

Методы моделирования, включающие физические, физико-математические и информационные модели;

Статистические методы.

Методы прогнозирования, основанные на экспертных оценках, заключаются в обобщении, статистической обработке и анализе мнений специалистов относительно перспектив развития данной области.

Методы моделирования базируются на основных положениях теории подобия. На основании подобия показателей модификации А, уровень надежности которой исследован ранее, и некоторых свойств модификации Б той же машины, прогнозируются показатели надежности Б на определенный период времени.

Статистические методы прогнозирования основаны на экстраполя­ции и интерполяции прогнозируемых параметров надежности, полученных в результате предварительных исследований. В основу метода положены законо­мерности изменения параметров надежности машин во времени.

Вопрос 23. Этапы прогнозирования надежности машин.

При прогнозировании надежности машин придерживаются следующей последовательности:

    Проводят классификация деталей и сборочных единиц по принципу ответственности. К деталям и сборочным единицам, отказы которых опасны для жизни людей, устанавливают более высокие требования безотказности.

    Формулируют понятия отказа деталей и сборочных единиц проектируемой системы. При этом необходимо учитывать только те детали и сборочные единицы, отказ которых приводит к полной или частичной утрате работоспособности системы.

3. Выбирают метод прогнозирования надежности в зависимости от этапа проектирования системы, точности исходных данных и принятых допущений.

    Составляют структурную схему изделия, включающую основные функциональные детали и сборочные единицы, в том числе детали и сборочные единицы силовых и кинематических цепей, расположенные по уровням в порядке их подчиненности, и отражающую связи между ними.

    Рассматривают все детали и сборочные единицы, начиная с верхнего уровня структурной схемы и кончая нижним, с подразделением их на следующие группы:

а) детали и сборочные единицы, показатели которых следует определять расчетными методами;

б) детали и сборочные единицы с заданными показателями надежности, включая назначенные параметры потока отказов;

в) детали и сборочные единицы, показатели надежности которых следует определять опытно-статистическими методами или методами испытаний.

6. Для деталей и сборочных единиц, надежность которых определяют расчетными методами:

Определяют спектры нагрузок и другие особенности эксплуатации, для чего составляют функциональные модели изделия и его сборочных единиц, которые, например, могут быть представлены матрицей состояний;

Составляют модели физических процессов, приводящих к отказам,

Устанавливают критерии отказов и предельных состояний (разрушение от кратковременных перегрузок, наступление предельного износа и др).

Классифицируют их на группы по критериям отказов и выбирают для каждой группы соответствующие методы расчета.

7. Строят при необходимости графики зависимости показателей надежности от времени, на основании которых сравнивают надежности отдельных деталей и сборочных единиц, а также различных вариантов структурных схем системы.

8. Hа основании проведенного прогнозирования надежности делают вывод о пригодности системы для применения по назначению. Если расчетная надежность окажется ниже заданной, разрабатывают мероприятия, направленные на повышение надежности рассчитываемой системы.

Вопрос 24. Прогнозирование надежности машин


^ Вопрос 24. Прогнозирование надежности машин

при помощи структурных схем.

При анализе надежности применяют метод структурных схем. Структурная схема представляет собой условную математическую и физическую модель изделия, по которой прогнозируется надежность в зависимости от уровня безотказности каждой детали и сборочной единицы.

Изделие при использовании структурных схем рассматривается как состоящее из отдельных элементов, предполагая, что отказ каждого элемента является независимым событием.

Различают последовательное, параллельное и комбинированное соединение элементов.

Под системой с последовательным соединением понимают такое соединение, когда отказ хотя бы одного элемента приведет к отказу всей системы.

Рисунок – Система с последовательным соединением элементов.

Вероятность безотказной работы системы n элементов в течение времени t определяют по формуле:

Где Р i (t) - вероятность безотказной работы i-го элемента за время t.

Если элементы равнонадежные, то есть
, то вероятность безотказной работы системы:

.

Вероятность отказа системы в течение времени t равна:

Частота отказов системы f c (t) определяется соотношением:

.

Интенсивность отказов системы:

,

Где
- интенсивность отказов i-го элемента;

Среднее время безотказной работы системы:

.

Система с параллельным соединение м элементов откажет лишь тогда, когда откажут все элементы.

Рисунок – Система с параллельным соединением элементов.

Вероятность безотказной работы системы при параллельном соединении n элементов в течение времени t будет равна:

.

Если элементы равнонадежные, т.е. , то

.

На практике одновременно встречаются оба вида соединения, тогда изделие рассматривается как смешанная система.

Рисунок – Система с комбинированным соединением элементов.

Вероятность безотказной работы в данном случае определяется по формуле:

Надежность системы с последовательным соединением элементов с ростом даже высоконадежных элементов значительно уменьшается.

Повышение надежности системы достигается за счет параллельного соединения элементов, хотя конструктивно в механической системе этот способ не всегда может быть реализован, т.к. увеличивает габариты и массу нефтепромыслового оборудования.

^ Вопрос 25. Резервирование как метод повышения надежности машин.

Одним из основных способов повышения надежности машин является резервирование.

Резервирование - структурная избыточность, предполагающая наличие в системе дополнительных элементов, не являющихся функционально необходимыми (наличие у автомобиля четырехколесных тормозных механизмов при функциональной достаточности двух).

Элемент на рисунке является основным и называется резервируемым. Элементы 2 ... n , предназначены для выполнения функций в случае отказа элемента 1, называются резервными.

Отношение количества резервных элементов к числу основных называется кратностью резерва .

Резервирование с кратностью единица называется дублированием .

Резерв по характеру нагружения делится на:

- нагруженный , при этом резервный элемент работает с той же интенсивностью, что и основной;

- облегченный , когда резервный элемент работает с меньшей интенсивностью, до тех пор пока не отказал основной;

- ненагруженный , в этом случае резервный элемент не используется до тех пор, пока не вышел из строя основной.

По масштабу резервирования различают на:

- общий резерв , при котором используется целая резервная система (дополнительный буровой насос в циркуляционной системе);

Рисунок– Схема общего резервирования системы.

- раздельный резерв , который предусматривает резервирование отдельных элементов системы (всех или только некоторых, наименее надежных, например, запасные втулки или поршни бурового насоса).

По восстанавливаемости отказавших элементов:

- резервирование с восстановлением , при котором восстановление отказавших основных и (или) резервных элементов технически возможно без нарушения работоспособности объекта в целом;

- резервирование без восстановления , при котором восстановление отказавших элементов (основных и (или) резервных) технически невозможно без нарушения работоспособности объекта в целом.

Повышение надежности подверженных старению технических систем в процессе эксплуатации может быть обеспечено только резервированием методами ремонта:

- нагруженным эксплуатационным резервированием , т. е. повышением ремонтопригодности изделия до уровня, исключающего образование критических дефектов, которые могли бы вызвать неремонтопригодное состояние объекта в течение определенной наработки;

- ненагруженным эксплуатационный резервированием - заменой отказавших элементов системы на ремонтные комплекты.

^ Вопрос 26. Роль технологии в обеспечении надежности машин.

Технологический процесс изготовления, сборки и контроля изделия должен с наименьшими затратами времени и средств обеспечить требуемый уровень качества продукции, включая и надежность.

Зависимость показателей надежности от уровня технологического процесса можно представить следующей схемой:

Последовательность технологических операций, применяемые методы и режимы обработки оказывают непосредственное влияние на износостойкость, прочность, коррозионную стойкость, теплостойкость, стабильность механических и физических свойств идругие эксплуатационные показатели изделий.

Совершенство технологического процесса во многом определяет и достигнутый уровень надежности изделия, так как именно в процессе изготовления обеспечивается заложенная конструктором надежность. Технологические методы обеспечения надежности имеют такое же решающее значение как конструктивные и эксплуатационные.

^ Вопрос 27. Понятие надежности технологического процесса.

Надежность технологического процесса - это его свойство обеспечивать изготовление продукции в заданном объеме, сохраняя во времени установленные требования к ее качеству.

Таким образом, технологическая система должна быть работоспособна как по показателям качества, так и по производительности. Свойство надежности технологического процесса отличается от понятия точности и стабильности.

Точность - свойство технологического процесса обеспечивать соответствие поля рассеивания значений показателя качества изготовления продукции заданному полю допуска и его расположению. Точность характеризует технологический процесс в некоторый фиксированный момент времени. Поэтому точность следует рассматривать как составную часть свойства надежности системы.

Стабильность - свойство технологического процесса сохранять показатели качества изготовляемой продукции в заданных пределах в течение некоторого времени. Понятие стабильности характеризует технологический процесс с позиции сохранения в заданных пределах показателей качества продукции. Технологический процесс может быть стабильным, но иметь низкую надежность.

Надежность технологических систем должна оцениваться только по тем параметрам и показателям качества изделия, уровень которых зависит от технологии изготовления.

При расчете надежности технологических систем следует исходить из того, что в конструкторской документации однозначно заданы номинальные значения и показатели качества готового изделия. Задача технолога оценить насколько процесс изготовления обеспечивает соблюдение установленных требований, не рассматривая технический уровень самих изделий. Поэтому технологический процесс может обладать высокой надежностью, хотя получаемая при его реализации продукция будет относиться к низкой категории качества, или морально устареть.

Показатели, которыми оценивается надежность технологического процесса, те же, что и для оценки надежности любой системы. При этом под безотказностью данного процесса понимается вероятность нахождения его технологических параметров в допустимых пределах в течение рассматриваемого периода времени.

^ Вопрос 28. Цели и виды испытаний на надежность.

Наиболее достоверную информацию о надежности машин получают в результате испытаний или наблюдений за машинами в процессе их эксплуатации.

В зависимости от целей испытаний их делят на два класса:

Исследовательские испытания

Испытания на надежность.

Исследовательские испытания проводят на стадии проектирования обычно на моделях, макетах или опытных образцах с целью выявления функциональных возможностей техники. Эти испытания необходимы в тех случаях, когда в машине применены новые физические эффекты, процессы, принципы компоновки или новые элементы (например, новые рабочие органы строительных машин).

Испытания на надежность проводят с целью определения и контроля по-казателей надежности машин и их элементов, исследование процессов, приводящих к отказам, выявления наиболее слабых элементов и определения причин их надежности.

^ Виды испытаний на надежность:

1. По уровню составных частей , подвергающихся испытаниям, различают испытание отдельных элементов или машины в целом. При элементных испытаниях отдельно может оцениваться надежность механической передачи, гидропривода, рамы, ходовой части, двигателя и т.п. В этом случае уменьшаются затраты времени и средств, более глубоко проводится обследование, имеются лучшие возможности для согласования и корректировки решений, расширяется унификация элементов. В тоже время нельзя полностью заменить испытание машины испытаниями элементов, так как при этом не учитывается взаимодействие различных узлов, входящих в машину.

2. По срокам проведения испытания могут быть ускоренные и нормальные.

Ускоренные испытания позволяют получить необходимый объем информации о надежности в более короткий срок, чем при нормальных условиях и режимах эксплуатации.

Нормальные испытания позволяют получить необходимую информацию о надежности в такой же срок, как и при работе машины в эксплуатационном периоде.

3. По месту и способу проведения, испытания делятся на:

Стендовые, которые проводят на специальном оборудовании (стендах), позволяющем воспроизводить заданные условия испытания изделия (создавать силовые, температурные и др. виды воздействия, реализовывать требуемый режим функционирования, например, двигателя или рабочего органа), а также обеспечивающем возможность измерения параметров технического состояния объекта и условий испытаний;


  • полигонные испытания, которые выполняются на специальных площадках (полигонах), где имеется возможность имитировать различные сочетания эксплуатационных воздействий в условиях, близких к реальным, а также контролировать условия испытаний и техническое состояние машины;

  • эксплуатационные испытания (наблюдения) дают наиболее полную и достоверную информацию о надежности машин в конкретных эксплуатационных условиях. Проводят их во время нормальной эксплуатации машины.
4. При проведении контрольных испытаний на надежность в ряде случаев рекомендуют их подразделять на испытания на безотказность, ремонтопригодность, сохраняемость и долговечность.

Испытания изделий на безотказность сводятся к контролю вероятности безотказной работы за заданное время или к определению наработки на отказ (средней наработки до первого отказа).

Испытания на ремонтопригодность обычно проводятся для определения среднего времени восстановления или вероятности восстановления работоспособности изделия за заданное время.

Испытания на долговечность предназначаются для контроля среднего или гамма-процентного ресурса.

Испытания на сохраняемость предусматриваются для контроля вероятности сохранения показателей изделия в течение заданного срока.

^ Вопрос 29. Объекты испытания на надежность.

Объектом испытаний могут быть:

образцы , если испытываются свойства материалов, определяющие долговечность изделий (испытания на износостойкость, усталостную прочность, коррозионную стойкость и т. п.);

детали , сопряжения и кинематические пары - для учета влияния конструктивных и технологических факторов на срок службы данных сопряжений (испытание подшипников, зубчатых колес, направляющих, шарниров и т. п.);

узлы машины , когда учитывается взаимодействие отдельных механизмов и элементов конструкции и их влияние на показатели работоспособности (испытание коробок скоростей и редукторов, двигателей, гидроагрегатов, систем управления, отдельных функциональных узлов машины);

машина в целом , когда учитывается взаимодействие всех механизмов и узлов в машине, условия ее эксплуатации и режимы работы (стендовые и эксплуатационные испытания насосов, автомобилей, текстильных машин и др.);

система машин , когда показатели надежности учитывают взаимодействие отдельных машин, связанных в единый производственный комплекс (надежность работы добывающих насосных установок, машин и агрегатов буровой установки, комплексов оборудования для интенсификации добычи нефти и т. п.).

Таким образом, объектом испытания могут быть разнообразные изделия от очень простых, обладающих однородными свойствами и одним или несколькими выходными параметрами, до сложных машин и комплексов, а также специально изготовленные модели (изделие или его часть, выполненные в масштабе) или макеты (упрощенное воспроизведение изделия или его части). Методика испытаний на надежность и их объем зависят от сложности изделия и его специфических особенностей.

^ Вопрос 30. Характеристики, оцениваемые при испытании на надежность.

Выделяют две основные группы характеристик изделия, которые являются объектом измерения и оценки при испытании на надежность.


  1. Характеристики процессов старения и разрушения и определение соответствующей им степени повреждения изделия. Так, при испытании изучается протекание процессов изнашивания, коррозии деформации, усталостных разрушений, и других, которые являются основной причиной потери изделием работоспособности.

  2. Характеристики изменения выходных параметров изделия (точности, КПД, несущей способности и т. д.), выход которых за допустимые пределы приводит к отказу.
Оценка процессов повреждения или выходных параметров изделия зависит от объекта испытания и поставленных задач. Чем сложнее объект испытания, тем большая доля общего объема испытаний приходится на оценку выходных параметров (рисунок).

При испытании материалов исследуются те процессы, которые приводят к его разрушению или изменению свойств (рисунок).

Для деталей и сопряжений кроме процессов повреждения определяются, как правило, и их выходные параметры - точность движения (вращения), изменение взаимного положения (износ сопряжения), коэффициент трения и др.

Для механизмов узлов и машин основным объектом измерения являются их выходные параметры. Процессы повреждения уже исследовались и оценивались при испытании отдельных элементов и узлов машины. При испытании всей машины процессы старения обычно регистрируются лишь для наиболее ответственных элементов, в основном определяющих работоспособность сложного изделия, например износ цилиндров двигателя, направляющих станка и т. п.

Задачи испытания и объекты измерения должны быть указаны в разрабатываемых для каждого случая методике и плане испытаний.

^ Вопрос 31. Причины отказа изделия раньше установленного ресурса.

В процессе эксплуатации изделия нередко отказы возникают раньше, чем это установлено ресурсом, что приводит к неожиданному прекращению работы машины или к снижению ее эффективности.

Различные факторы, действующие на машину при эксплуатации, связанные с климатическими, биологическими условиями и внешними воздействиями, создают комплекс причин для ускорения процессов старения и разрушения.

Так, повышенная влажность среды, колебания температуры, загрязненность атмосферы, ветер, акустический шум, солнечная радиация, плесень, бактерии, насекомые, грызуны - вот неполный перечень тех факторов, которые приходится учитывать при оценке возможности отказа изделия в различных условиях эксплуатации.

Чем большие воздействия оказывает на машину среда, тем выше вероятность отказа, которая резко возрастает при работе изделия в несвойственной ему обстановке. В этих случаях надо оценивать не вероятность отказа, а вероятность возникновения недопустимой ситуации.

При возникновении преждевременных отказов часто создается конфликтная ситуация между конструкторами, технологами и эксплуатационниками. Чтобы найти виновника и источник возникновения отказа необходимо проанализировать причины преждевременного отказа, т.е. обстоятельства, которые обусловили внезапность его возникновения.

Рассмотрим основные критерии для решения вопроса об ответственности той или иной службы за возникновение отказа.

Таблица 5 - Категории преждевременных отказов

Если отказ возник при нормальных условиях эксплуатации изделия без технологических дефектов, то возникновение такого отказа - допустимое событие, если число случаев отказа находится в регламентированных пределах.

Если же отказ связан с нарушением ТУ при изготовлении и эксплуатации изделий или неправильными расчетами при проектировании изделия, то соответствующие подразделения должны вносить коррективы в свою деятельность - пересмотреть методы расчета и прогнозирования надежности, повысить надежность технологического процесса, усовершенствовать методы эксплуатации и ремонта машины и т. п.

Большую информацию о преждевременных и недопустимых отказах, возникающих в процессе эксплуатации, могут дать рекламации потребителя, если они подвергаются тщательной обработке и анализу.

^ Вопрос 32. Периоды эксплуатации машин.

Под эксплуатацией машины понимают весь срок еесуществования от выпуска заводом-изготовителем до снятия с эксплуатации, который может состоять из отдельных периодов (табл.), во время которых работоспособность машины либо уменьшается, либо восстанавливается.

Таблица 4. Периоды эксплуатации машин.


Период эксплуатации

Работоспособность машин

I.Простои машины

Консервация и хранение

Транспортировка

Проверка работоспособности (диагностика) или наладка (подготовка к работе)

Простои (ожидание работы или ремонта)


Как правило, изменяется незначительно

II. Работа машины

Работа при нормальных режимах и условиях эксплуатации

Работа при повышенных режимах

Работа при пониженных режимах

Работа при проверках и испытаниях


Снижается

III. Ремонт машины

Плановые периодические ремонты

Техническое обслуживание

Аварийные ремонты


Восстанавливается

От структуры процесса эксплуатации, т. е. от чередования и длительности отдельных периодов, во многом зависит выбор показателей надежности, которые отражают требования к безотказности изделия в период его работы и возможность длительного поддержания работоспособности изделия.

Кроме того, характер работы машины во времени определяет период, в течение которого следует оценивать ее безотказность. На фактические показатели надежности существенное влияние оказывают условия и методы эксплуатации машины, применяемая система ремонта и технического обслуживания, квалификация персонала.

^ Вопрос 33. Влияние системы обслуживания на надежность машин.

Потеря машиной работоспособности в процессе ее эксплуатации - неотвратимый процесс, протекающий в зависимости от конструкции машины и условий ее использования с большей или меньшей интенсивностью.

Предельным состоянием изделия будет такое, при котором вероятность выхода его параметров за допустимые пределы достигнет установленного уровня. Начиная с этого момента, изделие нуждается в восстановлении утраченной работоспособности.

Это достигается путем ремонта узлов и элементов машины, заменой износившихся частей запасными, регулировкой механизмов и другими методами, которые для краткости будем называть одним термином - ремонт.

От системы ремонта и ТО, которая определяет периодичность и объемы ремонтных работ, зависят показатели надежности изделия. Эта система для любой машины строится, как правило, на основании следующих принципов:

Для удобства эксплуатации машины и планирования ремонта предусматриваются периодические остановки машины для ее ремонта и профилактических мероприятий через заданные, как правило, равные промежутки времени (или после выполнения заданного объема работы);

Объемы периодических ремонтных работ и соответственно длительность простоя машины в ремонте неодинаковы, так как должно быть обеспечено восстановление работоспособности машины при протекании разнообразных процессов старения.

При разработке системы ремонта и технического обслуживания необходимо учитывать следующее:

В каждой машине, как правило, имеются детали и элементы с широким диапазоном их потенциальных сроков службы (наработки) до отказа;

Современные технические возможности позволяют осуществить ремонт и восстановить утраченную работоспособность для любых отказов машины (кроме особых случаев - например, гибели изделия в результате катастрофы); вопрос может идти лишь о больших или меньших затратах времени и средств;

Система ремонта и технического обслуживания имеет как общие для данного типа машин черты (например, характер и последовательность периодических ремонтов), так и параметры, отражающие уровень надежности машин данного назначения (например, время до капитального ремонта), основные параметры системы ремонта связаны с показателями надежности машины;

Система ремонта назначается для машины в целом, поэтому вероятность отказа отдельных узлов и механизмов машины и их регламентированные сроки службы (наработки) должны назначаться с учетом периодичности ремонтов, принятой данной системой;

При оценке работоспособности машины деление деталей и узлов на ремонтируемые и неремонтируемые не обязательно; для восстановления работоспособности машины неважно, заменяется или ремонтируется деталь, важно лишь, чтобы замененная или отремонтированная деталь отвечала техническим условиям;

При разработке технологических процессов ремонтных работ необходимо учитывать их влияние на качественные показатели отремонтированных изделий.

^ Вопрос 34. Методы повышения надежности нефтепромыслового оборудования

Методы и возможности по повышению надежности машин весьма разнообразны и связаны со всеми этапами проектирования, изготовления и эксплуатации машин. Проводимые в этой области мероприятия разделяются на несколько генеральных направлений.

1. Повышение сопротивляемости машин внешним воздействиям:

Создание прочных жестких, износостойких узлов за счет их рациональной конструкции;

Применение материалов с высокой прочностью, износостойкостью, антикоррозионностью, теплостойкостью;

Уменьшение нагрузок, действующих на механизм;

Применение упрочняющей технологии;

Исключение влияния технологической наследственности и др.

2. Изоляция машин от вредных воздействий.

Установка машины на фундамент,

Защита поверхностей от запыления и загрязнения,

Создание для машин специальных условий по температуре и влажности,

Применение антикоррозийных покрытий и т. д.

3. Создание оптимальной конструкции машины: с позиций надежности оптимальной будет такая конструкция машины и ее элементов, когда с наименьшими затратами средств достигается требуемая продолжительность работы отдельных узлов, механизмов и машины в целом при заданной безотказности и регламентированных затратах на ремонт и техническое обслуживание.

4. Применение автоматики для повышения надежности машин.

Проблема надежности машин возникла в первую очередь в связи с развитием автоматизации, с необходимостью обеспечить бесперебойную работу и взаимодействие механических, электрических, гидравлических и других устройств. Создание самонастраивающихся и саморегулируемых машин позволяет машине не только обладать способностью выполнять заданную работу, но и осуществлять свои функции длительное время, не опасаясь как внешних воздействий, так и процессов, происходящих в самой машине.

5. Создание машин с регламентированными показателями надежности. Под регламентацией показателей надежности понимается, знание законов распределения сроков службы (наработки), законов распределения скоростей изнашивания (или других процессов старения), характеристик начального состояния машины и всех тех данных, которые определяют область работоспособности машины и вероятность нахождения машины в заданном состоянии.

^ Вопрос 35. Направления дальнейших исследований в области надежности машин

Проблемы, которые являются первоочередными для дальнейших исследований по надежности машин и представляют самостоятельные направления в данной области:


  1. ^ Разработка моделей параметрических отказов. Развитие идей о взаимодействии машины со средой, учет обратных связей «процессы - выходные параметры машины», оценка взаимодействия параметров и других особенностей потери работоспособности сложных систем позволит разработать более совершенные модели отказов разнообразных машин и изделий. Эти модели должны учитывать внутренние связи и внешние воздействия, характерные для данной категории машин, давать основу для разработки алгоритмов по оценке надежности сложных изделий.

  2. ^ Динамика медленных процессов должна изучать те изменения в узлах и элементах машины, которые происходят в течение длительных промежутков времени. Эти процессы являются причиной отказов машины и изменения ее состояния со временем. Можно использовать фундаментальные принципы динамики машин и теории автоматического управления. При этом в первую очередь надо учитывать большую инерционность систем, возрастание периодичности внешних воздействий, взаимодействие обратимых и необратимых процессов, малую скорость процессов.

  1. ^ Прогнозирование надежности сложных систем. Для различных категорий машин необходимо дальнейшее развитие и воплощение идей о прогнозировании надежности на основе моделей отказов, которые базируются на закономерностях процессов повреждения (физики отказов) с учетом их вероятностной природы. Перспективным является использование методов статистического моделирования, когда учитываются вероятностные характеристики режимов и условий работы машины, внешних воздействий и протекающих процессов старения. Особенно актуальны еще недостаточно разработанные методы прогнозирования надежности с учетом процессов изнашивания, которые являются основной причиной отказов многих машин. Особую проблему представляет изучение надежности комплексов «машина - автоматическая система управления», так как взаимодействие механических и электронных систем порождает ряд новых аспектов теории надежности.

  2. ^ Нормирование показателей надежности. Разработка нормативов для показателей безотказности и долговечности машины, регламентация скоростей процессов, предельных состояний машины и ее элементов, запасов надежности, скорости изменения выходных параметров - необходимое условие для эффективного использования машин.
Базой является экономический фактор, оценивающий последствия отказов и выступающий в качестве критерия для оптимизации требований к показателям надежности.

  1. ^ Влияние износа на динамические параметры машины. Для многих машин динамика лимитирует (ограничивает) допустимые величины износов и ресурс изделия. В уравнениях динамики присутствуют показатели, зависящие от времени и имеющие случайную природу. Раскрытие этих закономерностей позволит объяснить многие сложные явления, связанные с изменением выходных параметров машины во времени, с отказами функционирования из-за разрушения ее элементов. Последнее часто является следствием возрастания динамических нагрузок в машине при износе ее элементов.

  2. ^ Разработка систем информации о надежности из сферы ремонта необходима для управления надежностью, оценки тенденций ее изменения и достигнутого уровня. Чем выше требования к безотказности изделий, тем меньше информации поступает из сферы эксплуатации. Необходимо создание специальных систем информации о степени повреждения элементов ремонтируемых изделий, не достигнувших предельного состояния и не имеющих отказов, для недопущения которых и производится их ремонт. Этот позволит оценить степень использования потенциальных возможностей изделия по надежности и обоснованно назначить ресурс для машины и ее агрегатов.

  3. ^ Испытание на надежность сложных систем. Основой для разработки методик испытаний сложных систем являются развитие методов испытания в сочетании с прогнозированием и использованием заданной информации, разработка алгоритмов по оценке надежности с учетом постоянно поступающей информации о состоянии изделия, выявление экстремальных реализаций потери изделием работоспособности, сочетание испытания со статистическим моделированием, оценка и прогнозирование ведущих процессов старения.

  4. ^ Анализ надежности технологического процесса. Технологический процесс должен обеспечить устойчивое формирование всех параметров изделия, которые определяют его надежность. Анализ структуры технологического процесса, применяемых методов и режимов обработки, методов контроля, учет остаточных и побочных явлений, связанных с обработкой и сборкой изделий, оценка технологической наследственности, использование принципов адаптации и саморегулирования позволят более эффективно решения обеспечивать надежность изделий при производстве.
^ 9. Оптимизация системы ремонта технического обслуживания. Выявление рациональных методов ремонта и Т. О. связано с их оптимизацией, в первую очередь, по критерию экономичности, что требует учета вероятностных процессов потери машиной работоспособности и реальных возможностей по ее восстановлению. Правильная организация системы ремонта и обслуживания может при тех же затратах значительно повысить эффективность использования сложных технических устройств и машин.

^ 10. Использование автоматики для обеспечения надежности машин. Создание кибернетических систем, предотвращающих вредные последствия процессов, протекающих в машине, воплощение принципа адаптации и саморегулирования не только для рабочих функций машины, но и для сохранения ее качественных показателей.

Широкий фронт исследовательских и конструкторских работ в области надежности машин являются залогом обеспечения с минимальными затратами времени и средств необходимого уровня надежности машин и изделий.

Материалы практических занятий № 6 и 7.

Прогнозирование надежности.

Прогнозирование надежности. Прогнозирование надежности с учетом предварительной информации. Использование косвенных признаков прогнозирования отказов. Индивидуальное прогнозирование надежности. Индивидуальное прогнозирование надежности по методу распознавания образов (Порядок проведения испытаний. Порядок обучения распознающей функции. Порядок проведения прогнозирования качества изделия. Пример метода индивидуального прогнозирования качества изделия.).

ПЗ.6-7.1. Прогнозирование надежности.

В соответствии с действующими ГОСТами в технические задания на проектируемые изделия (объекты) записываются требования экспериментального подтверждения заданного уровня надежности с учетом действующих нагрузок.

Для высоконадежных объектов (например, космической техники) это требование является чрезмерно жестким (в смысле необходимости испытания большого числа однотипных объектов) и не всегда практически осуществимым. В самом деле, для того, чтобы подтвердить вероятность безотказной работы Р = 0,999 с 95%-й доверительной вероятностью следует осуществить 2996 успешных испытаний. Если же хотя бы одно испытание будет неудачным, то число потребных испытаний еще более возрастет. К этому следует добавить и очень большую продолжительность испытаний, так как многие объекты должны сочетать высокий уровень надежности с большой наработкой (ресурсом). Отсюда вытекает важное требование : при оценке надежности необходимо учитывать всю накопленную предварительную информацию о надежности технических объектов.

Прогнозирование надежности и отказов – это предсказание ожидаемых показателей надежности и вероятности возникновения отказов в будущем на основании информации полученной в прошлом, либо на основании косвенных прогнозирующих признаков.

Расчет надежности на этапе проектирования изделий носит черты такого прогнозирования, поскольку делается попытка предвидеть будущее состояние изделия, которое еще находится на стадии разработки.

Некоторые испытания, рассмотренные выше, содержат элементы прогнозирования надежности партии изделий по надежности их выборки, например, по графику испытаний . Эти способы прогнозирования основаны на изучении статистических закономерностей отказов.

Но возможно прогнозирование надежности и отказов на основе изучения факторов обуславливающих возникновение отказов. В этом случае, наряду со статистическими закономерностями рассматриваются также и физико-химические факторы, влияющие на надежность, что усложняет ее анализ, но позволяет сократить его продолжительность и делает его более информативным.

ПЗ.6-7.2. Прогнозирование надежности с учетом предварительной информации.

При оценке надежности необходимо учитывать всю накопленную предварительную информацию о надежности технических объектов. Например , важно расчетную информацию, полученную на стадии эскизного проектирования, в дальнейшем сочетать с результатами испытаний объекта. Кроме того, сами испытания тоже весьма разнообразны и проводятся на разных этапах создания объекта и на различных уровнях его сборки (элементы, блоки, узлы, подсистемы, системы). Учет информации, характеризующей изменение надежности в процессе совершенствования объекта, позволяет значительно уменьшить количество испытаний необходимых для экспериментального подтверждения достигнутого уровня надежности.

В процессе создания технических объектов проводятся испытания. На основании анализа результатов этих испытаний в конструкцию вносятся изменения, направленные на совершенствование их характеристик. Поэтому важно оценить, насколько эффективными оказались эти мероприятия и действительно ли после внесения изменений показатели надежности объекта улучшились. Такой анализ можно выполнить, используя методы математической статистики и математические модели изменения надежности.

Если вероятность некоторого события в единичном опыте равна р и при n независимых опытах это событие (отказ) произошло m раз, то доверительные границы для p находят следующим образом:

Случай 1. Пусть m ¹ 0 , тогда:

(ПЗ.6-7.2.)

где коэффициенты R 1 и R 2 берутся из соответствующих статистических таблиц.

Случай 2 . Пусть m=0 , тогда р н =0, а верхняя граница равна

. (ПЗ.6-7.3.)

Расчет R 0 производится по уравнению

(ПЗ.6-7.4.)

Односторонние доверительные вероятности g 1 и g 2 связаны с двухсторонней доверительной вероятностью γ * известной зависимостью

(ПЗ.6-7.5.)

Стендовые, наземные испытания дают основную информацию о надежности объекта. На основании результатов таких испытаний определяют показатели надежности . Если техническое изделие представляет собою сложную систему, причем надежность некоторых элементов определена экспериментально, а некоторых расчетные путем, то для прогнозирования надежности сложной системы применяют метод эквивалентных частностей .

При летных испытаниях получают дополнительную информацию о надежности объекта и эта информация должна использоваться для уточнения и корректировки полученных при стендовых испытаниях показателей надежности. Пусть необходимо уточнить нижнюю границу вероятности безотказной работы объекта, который прошел стендовые наземные испытания и летные испытания и при этом m=0.

В жизни любого объекта, как некоторого изделия всегда можно выделить два этапа: производство и эксплуатация данного объекта. Бывает так же этап хранения этого объекта.

Для любого объекта на каждом этапе его жизни задаются определенные технические требования. Желательно, чтобы объект всегда соответствовал этим требованиям. Однако в объекте могут возникнуть неисправности, нарушающие указанное соответствие прибора. Тогда задача состоит в том, чтобы создать на этапе производства или восстановить нарушенную неисправность (которая может появиться на этапах эксплуатации или хранения) в соответствии с заданными техническими требованиями прилагаемыми объекту.

Решение этой задачи невозможно без эпизодического или непрерывного диагноза состояния объекта. Состояние объекта определяется его надежностью. Надежность: это свойство объекта выполняемых заданных функций сохранения, во время значений и установленных эксплуатационных показателей в заданных режимах и условиях использования, технического обслуживания, ремонта и т.д.

Исправное состояние: это состояние, при котором прибор соответствует всем требованиям устнормативной – технической документации.

Неисправное состояние: это состояние, при котором прибор, объект не соответствует хотя бы одному из требований нормативно – технической документации.

Работоспособное состояние: это состояние объекта, при котором он способен выполнять заданные функции, сохраняя значения заданных нормативов в пределах установленных документацией.

Неработоспособное состояние: это состояние, при котором значения хотя бы одного заданного параметра не соответствуют нормативно – технической документации.

Понятие повреждение заключается в нарушении исправного состояния изделия при сохранении его работоспособности. Для любого изделия существуют понятия: дефект, неисправность, отказ, сбой и ошибка.

Дефект: это отклонение от параметров изделия относительно заданных в нормативно – технической документации.

Неисправность: форматированное представление факта проявления дефекта на входах и выходах изделия.

Отказ: дефекты, связанные с необратимыми нарушениями характеристик изделия, приводящим к нарушению его работоспособного состояния.

Сбой: дефект, заключающийся в том, что в результате временного изменения параметров изделия в течение некоторого периода времени оно будет функционировать непрерывно. Причем его работоспособность восстанавливается самонаправленно. Помехи, воздействующие на работоспособность.

Ошибки: (для дискретной техники) называют неправильное значение сигналов на внешних входах изделия, вызванное неисправностями, переходными процессами или помехами, воздействующими на изделие.

Число дефектов, неисправностей, отказов, сбоев, одновременно присутствующих в изделии называют кратностью.

Кратность ошибок определена не только кратностью неисправности, из-за которой она возникла, но и структурной схемой изделия, т.к. в результате имеющихся разветвлений в схеме однократная неисправность может вызвать многократную ошибку в последовательных цепях.

Безотказность: свойство изделия, в котором он непрерывно сохраняет работоспособность в течение некоторого времени.

Ремонтопригодность: свойство изделия, заключающееся в приспособленности к предупреждению и обнаружению причин возникновения его отказов, повреждений и устранения их путем ремонта и технического обслуживания.

Показатели безотказности:

1) Вероятность безотказной работы P(t) – это вероятность того, что в заданном интервале времени t в изделии не возникает отказа.

0£ P(t) £1; P(o) = 1; P(¥) = 0;

Функция P(t) является монотонно убывающей функцией, т.е. в процессе эксплуатации и хранения надежность только убывает. Для определения P(t) используется следующая статическая оценка:

где N – число изделий, поставленных на испытание (эксплуатацию).

N 0 – число изделий, отказавших в течении времени t.

2) Вероятность бессбойной работы Р сб (t) – это вероятность того, что в заданном интервале времени t будет отсутствовать сбой в изделии.

Р сб (t) = 1- Q сб (t); где - Q сб (t) функция распределения сбоев в течение времени t.

Для определения стабильности оценки мы имеем формулу:

где N – число изделий поступивших на эксплуатацию.

N 0 – число изделий, в которых произошел сбой в течение времени t.

3) Интенсивность отказа l(t) – это условная плотность вероятности возникновения отказа не восстанавливаемого объекта, определенного рассмотренного момента времени, при условии, что до этого момента отказ не возник.

Для определенно l(t) используется следующая статистическая оценка:

где n(Dt) – число отказавших изделий в интервал времени (Dt).

N ср (Dt) – ссреднее число исправных изделий в интервал времени (Dt).

;

4) Средняя наработка до отказа (среднее время безотказной работы) Т – это математическое ожидание наработки до первого отказа определяется так:

Эти показатели рассчитаны на изделие, которое не подлежит восстановлению.

Показатели ремонтопригодности:

1) Вероятность восстановления s(t) – это вероятность того, что отказавшее изделие будет восстановлено в течение времени t.

где n в – число изделий время восстановления которых было < (меньше) заданного времени t. N ов – число изделий оставшихся на восстановлении.

2) Интенсивность восстановленного М(t) – условная плотность распространения времени восстановления для момента времени t при условии, что до этого момента восстановление изделия не произошло.

где n в (Dt) – число восстановленных изделий за время Dt. N в.ср (Dt) – среднее число изделий которые, не были восстановлены в течение времени Dt.

3) Среднее время восстановления Т в – это натуральная величина ожидания восстановления.


Статистическая оценка: ;

4) Коэффициент готовности К г (t) – это вероятность того, что изделие работоспособно в произвольный момент времени t.

Стационарный режим: t ® ¥.

К г = lim К г (t)

Стационарная оценка: ;

где t pi i – ый интервал времени исправной работы изделия.

t bi – интервал времени восстановления изделия.

n – число отказов изделия.

Коэффициент оперативной готовности К опер. (t, t) – работоспособна в произвольный момент времени t.

5) Коэффициент оперативной готовности К опер. (t, t) – это вероятность того, что аппаратура будет работоспособна в произвольный момент времени t. и безотказно проработает заданное время r.

К опер. (t, t) = К г (t) · Р(t)

Для определения К опер. имеется статистическая оценка:

ПРОГНОЗИРОВАНИЕ НАДЕЖНОСТИ НЕФТЕПРОМЫСЛОВОГО ОБОРУДОВАНИЯ ПРИ ПРОЕКТИРОВАНИИ

Проектирование любой сложной технической системы, в том числе нефтепромыслового оборудования, - первый и основной этап, на котором закладывается определенный уровень его надежности. Поэтому на различ­ных стадиях проектирования сложных систем (техническое предложение, эскизный проект, технический проект) возникает необходимость прогно­зировать ожидаемую надежность этих систем с целью количественной оценки показателей надежности проектируемого варианта изделия и со­поставления прогнозируемых показателей с требуемыми значениями. Прогнозирование особенно важно на ранних стадиях проектирования, когда необходимо сравнить по надежности различные варианты структур­ных схем разрабатываемой системы и ее узлов, что дает возможность своевременно осуществить меры по повышению надежности.

Основным принципом прогнозирования надежности изделий при проектировании должен быть системный подход, позволяющий учитывать особенности конструкции, возможности производства и условия эксплуа­тации.

Исходная информация для прогнозирования надежности изделий включает:

конструкторскую документацию на различных стадиях разработки изделия (техническое предложение, эскизный проект, технический проект и рабочие чертежи); данные об изделиях-аналогах, включающие статистические сведения об их надежности в эксплуатации; данные об испытаниях, включающие сведения о нагруженное™ деталей и сборочных единиц; сведения об условиях эксплуатации.

При прогнозировании надежности современные нефтепромысловые машины и механизмы рассматриваются как сложные системы, состоящие из большого числа деталей и сборочных единиц, которые определенным образом функционально связаны между собой и образуют так называе­мую иерархическую структурную схему - графическое изображение из­делия в виде совокупности его сборочных единиц и деталей, связанных между собой в порядке соподчинения по уровням. На первом уровне рас­сматриваются конструктивно-завершенные и имеющие самостоятельное функциональное назначение сборочные единицы, на последующих уров­нях - элементарные и неделимые единицы и т.д.

На основании структурных схем строятся математические модели, по которым прогнозируется надежность в зависимости от уровня безот­казности каждой детали и сборочной единицы. Различают:

минимальную структуру - укрупненную схему изделия, включающую сборочные единицы первого уровня и связи, отображающие его функцио­нальное назначение;

избыточную структуру - схему изделия, в минимальную структуру которой введены обеспечивающие или резервные подсистемы.

Таким образом, при прогнозировании надежности изделия в целом его структурную схему следует представлять в виде иерархической системы деталь - сборочная единица - изделие с выделением минималь­ной и избыточной структур.

Конкретный тип обеспечивающих подсистем вводят по результатам анализа связей в структуре системы и протекающих физических процес­сов, определяющих их надежность. В отличие от резервных подсистем обеспечивающие подсистемы вводят не с целью замещения отказавших основных подсистем, а для обеспечения благоприятных условий их функ­ционирования.

На первом этапе проводят оценку надежности минимальной структуры исследуемой системы. Вероятность безотказной работы Р (() минималь­ной структуры, состоящей из последовательно соединенных подсистем, выражают зависимостью Р (0= П Р-(1).

В зависимости от точности исходных данных и принятых допущений проводят ориентировочное и окончательное прогнозирование надежности сложных систем.

Ориентировочное прогнозирование показателей надежности проекти­руемых изделий проводят на стадиях разработки технического предложе­ния и эскизного проекта с использованием экспертных и экстраполяционных методов, а также опытно-статистических методов прогнозирования по изделиям-аналогам. При ориентировочных расчетах в основном оценивается ожидаемая безотказность проектируемой системы. Результа­ты ориентировочного прогнозирования безотказности позволяют опреде­лить рациональный состав системы по номенклатуре сборочных единиц, деталей и наметить пути повышения безотказности на стадии эскизного проектирования. Ориентировочное прогнозирование безотказности слож­ных систем основано на ряде допущений, которые в некоторых случаях идеализируют функционирование проектируемой сложной системы. Объясняется это тем, что для применения более точных методов часто не хватает исходных данных.

Окончательное прогнозирование показателей надежности проектируе­мых изделий проводят на стадии разработки технического проекта с использованием расчетного метода и метода исследовательских испыта­ний. При выборе метода прогнозирования надежности следует отдавать предпочтение расчетному методу, который наиболее полно учитывает формирующие надежность факторы: физическую природу отказов, пре­дельные состояния деталей, кинематические и динамические характерис­тики конструкции, внешние воздействия и др.

По результатам ориентировочных и окончательных расчетов делается прогноз о надежности проектируемой системы. Если полученные значения показателей надежности не соответствуют требуемым, делается вывод об их обеспечении за счет рассмотрения других вариантов изделия и при­менения схемных методов повышения надежности, в том числе резерви­рования. В случае применения резервирования проводится расчет надеж­ности резервированной системы, на основании которого окончательно выбирается метод резервирования и число резервных подсистем.

При прогнозировании надежности сложных технических систем целе­сообразно придерживаться определенной последовательности.

1. Проводится классификация деталей и сборочных единиц по принци­пу ответственности. К деталям и сборочным единицам, отказы которых опасны для жизни людей, устанавливаются более высокие требования безотказности.

2. Формулируются понятия отказа деталей и сборочных единиц проек­тируемой системы. При этом существен выбор числа деталей и сборочных единиц, влияющих на надежность системы. Необходимо учитывать только те детали и сборочные единицы, отказ которых приводит к полной или частичной утрате работоспособности системы.

3. Выбирается метод прогнозирования надежности в зависимости от этапа проектирования системы, точности исходных данных и принятых допущений.

4. Составляется иерархическая структурная схема изделия, включаю­щая основные функциональные детали и сборочные единицы, в том числе детали и сборочные единицы силовых и кинематических цепей, располо­женные по уровням в порядке их подчиненности, и отражающаясвязи между ними.

5. Рассматриваются все детали и сборочные единицы, начиная с верхне­го уровня структурной схемы и кончая нижним, с подразделением их на следующие группы:

а) детали и сборочные единицы, показатели которых следует опреде­лять расчетными методами;

б) детали и сборочные единицы с заданными показателями надежности, включая назначенные параметры потока отказов;

в) детали и сборочные единицы, показатели надежности которых следует определять опытно-статистическими методами или методами испытаний.

6. Для деталей и сборочных единиц, надежность которых определяют расчетными методами:

Определяют спектры нагрузок и другие особенности эксплуатации, для чего составляют функциональные модели изделия и его сборочных единиц, которые, например, могут быть представлены матрицей состоя­ний;

Составляют модели физических процессов, приводящих к отказам, и устанавливают критерии отказов и предельных состояний (разрушение от кратковременных перегрузок, наступление предельного износа и др.);

Классифицируют их на группы по критериям отказов и выбирают для каждой группы соответствующие методы расчета;

Проводят детерминированные расчеты (на прочность, долговечность и т.п.) при наиболее неблагоприятном сочетании факторов и условий эксплуатации, если при этом предельные состояния не достигаются, то соответствующую деталь или сборочную единицу при прогнозировании надежности Изделия не учитывают и исключают из структурной схемы; в противном случае проводят расчет вероятностными методами и определяют численные значения показателей надежности (методические указания по прогнозированию надежности изделий, сборочных единиц и деталей расчетным методом приведены в ГОСТ 27.301-83 "Надежность в технике. Прогнозирование надежности изделий при проектировании. Общие требования").

7. Строятся при необходимости графики зависимости показателей надежности от времени, на основании которых сравниваются надежности отдельных деталей или сборочных единиц, а также различных вариантов структурных схем системы.

8. На основании проведенного прогнозирования надежности делается вывод о пригодности системы для применения по назначению. Если расчетная надежность окажется ниже заданной, разрабатываются мероприятия, направленные на повышение надежности рассчитываемой системы.

Loading...Loading...