Shdsl модем скорость передачи. Цифровые системы передачи: от HDSL к G.shdsl. Модель A, высокий уровень внедрения xDSL технологий

Передачу данных со скоростями от 192 Kбит/с до 2,3 Мбит/с (с шагом в 8 Кбит/с) по одной паре проводов, и 384 - 4,6 Мбит/с по двум парам.

Особенности технологии

Ссылки

  • ITU-T Recommendation G.991.2: Single-pair high-speed digital subscriber line (SHDSL) transceivers (англ.)
  • Сигранд: самый быстрый SHDSL модем – 15,2 Мбит/c по одной паре

См. также

Wikimedia Foundation . 2010 .

Смотреть что такое "SHDSL" в других словарях:

    - (Single pair High speed Digital Subscriber Line, ITU G.991.2) – одна из xDSL технологий, описывающая метод передачи сигнала по паре медных проводников. Используется преимущественно для решения проблемы «последней мили», т.е.соединения абонентов с … Википедия

    SHDSL - Saltar a navegación, búsqueda EL SHDSL (Single pair High speed Digital Subscriber Line, Línea digital de abonado de un solo par de alta velocidad) ha sido desarrollada como resultado de la unión de las diferentes tecnologías DSL de conexión… … Wikipedia Español

    SHDSL - (Single pair High speed Digital Subscriber Line) ou Ligne Numérique d Abonné Symétrique à très haut niveau de transmission sur des distances plus grandes que les autres technologies DSL. Elle permet de relier des utilisateurs situés à plus de… … Wikipédia en Français

    SHDSL - SDSL (Symmetric Digital Subscriber Line) ist eine DSL Zugangstechnik zu einem öffentlichen digitalen Netzwerk wie beispielsweise dem Telefonnetz über eine Telefonleitung. Im Gegensatz zu ADSL lassen sich Daten mit der gleichen Geschwindigkeit in… … Deutsch Wikipedia

    SHDSL - ● en sg. m. NORM Symmetric High bitrate DSL. DSL avec un débit garanti de 2,3 Mbps sur une simple ligne téléphonique … Dictionnaire d"informatique francophone

    G.SHDSL

    G.SHDSL - (Global Standard for Single Pair Highspeed Digital Subscriber Line) ist eine symmetrische DSL Übertragungstechnik in digitalen Weitverkehrsnetzen. Bei G.SHDSL werden die gleichen Datenübertragungsraten im Up wie im Downstream über eine oder zwei… … Deutsch Wikipedia

    SHDSL (англ. Single pair High speed + DSL), G.shdsl, ITU G.991.2 одна из xDSL технологий, обеспечивает симметричную дуплексную передачу данных сигнала по паре медных проводников. Используется преимущественно соединения абонентов с узлом… … Википедия

    G.991.2 - SHDSL SHDSL (Single pair High speed Digital Subscriber Line) ou Ligne Numérique d Abonné Symétrique à très haut niveau de transmission sur des distances plus grandes que les autres technologies DSL. Elle permet de relier des utilisateurs situés à … Wikipédia en Français

    ITU G.991.2 - SHDSL SHDSL (Single pair High speed Digital Subscriber Line) ou Ligne Numérique d Abonné Symétrique à très haut niveau de transmission sur des distances plus grandes que les autres technologies DSL. Elle permet de relier des utilisateurs situés à … Wikipédia en Français

Технологий, обеспечивает симметричную дуплексную передачу данных по паре медных проводников. Используется преимущественно для соединения абонентов с узлом доступа провайдера (так называемая последняя миля). Основные идеи взяты из технологии HDSL2.

По стандарту технология SHDSL обеспечивает передачу данных со скоростями от 192 Кбит/с до 2.3 Mбит/c (с шагом в 8 Кбит/с) по одной паре проводов, соответственно от 384 кбит/c до 4,6 Mбит/c.м. по двум парам.
При использовании методов кодирования TC-PAM 128 стало возможным повысить скорость передачи до 15,2 Мбит/сек по одной паре и до 30,4 Мбит/сек по двум парам соответственно. [ ]

Работа над G.shdsl началась в 1998 году в международном союзе электросвязи (ITU-T) , и в феврале 2001 года он был принят как стандарт G.991.2. Европейской версией этого стандарта занимается и ETSI , сейчас он оформлен в виде спецификации TS 101524.

Особенности технологии

В основу G.shdsl легли идеи HDSL2 , получившие дальнейшее развитие. Используя линейное кодирование и модуляцию HDSL2, удалось снизить влияние на соседние линии ADSL при скоростях более 784 Кбит/с. Так как новая система использует более эффективное линейное кодирование (TC-PAM) по сравнению с 2B1Q , то при любой скорости сигнал SHDSL занимает более узкую частотную полосу. Следовательно, и помехи от новой системы на другие xDSL имеют меньшую мощность, нежели помехи от HDSL 2B1Q. Также G.shdsl имеет форму спектральной плотности сигнала, обеспечивающую практически идеальную совместимость с сигналами ADSL.

Варианты SHDSL, использующие одну пару проводов, обеспечивают существенный выигрыш по аппаратным затратам и, соответственно, надежности изделия, по сравнению с двухпарными вариантами. Стоимость снижается на 30 % для модемов и 40 % для регенераторов, так как для каждой из пар необходим приемопередатчик HDSL, линейные цепи, элементы защиты и пр.

Для поддержки клиентов различного уровня было решено сделать возможность выбора скорости передачи сигнала. Благодаря этому операторы могут выстроить маркетинговую политику, наиболее приближенную к потребностям клиентов. Кроме того, можно добиться увеличения дальности передачи без использования регенераторов, уменьшая скорость. При максимальной скорости (для провода 0,4 мм) рабочая дальность составляет около 3,5 км, а при минимальной - свыше 6 км. Также есть возможность одновременного использования двух пар, что позволяет увеличить предельную скорость в два раза. В настоящее время максимальная стабильная скорость передачи данных по одной медной паре достигает 15296 Кбит/сек.

См. также

Примечания

Ссылки

  • ITU-T Recommendation G.991.2: Single-pair high-speed digital subscriber line (SHDSL) transceivers (англ.)

SHDSL - симметричная высокоскоростная технология, которая является дальнейшим развитием технологии SDSL. Существует ряд разновидностей указанной технологии, из которых одной из наиболее перспективных можно считать G.SHDSL. G.SHDSL позволяет создать стандарт, который обеспечивает совместимость разнотипного оборудования различных поставщиков услуг. В настоящее время G.SHDSL - это единственная симметричная DSL-технология, стандартизованная Международным союзом электросвязи (ITU).

Как и любая симметричная xDSL-технология, G.SHDSL ориентирована, главным образом, на корпоративный сектор, поскольку именно он нуждается в симметричном доступе -- голосовые каналы, удаленный доступ к сети предприятия, подключение к Интернету (веб-серверы) и другие приложения в ряде случаев требуют передачи одинаковых по объему входящих и исходящих потоков.

В основу G.SHDSL положены основные идеи HDSL2, получившие дальнейшее развитие. В данной технологии также применяется тип линейного сигнала TC-PAM 16. При кодировании за один тактовый интервал сигнала TC-PAM 16 передаётся 4 бита, 3 из которых являются информационными битами исходного бинарного сигнала, и формируется сигнал с 16-ю кодовыми состояниями. Процесс формирования получил название импульсной амплитудно-фазовой модуляции с так называемым решётчатым кодированием (кодированием Треллис, Trellis coded modulation).

Решётчатое кодирование применяется в качестве внутреннего кода микропроцессора, формирующего сигнал TC-PAM 16. Его преимуществами является повышенная помехозащищённость и снижение задержки сигнала при его обработке. Опыт внедрения указанной технологии показал, что соотношение сигнал/шум возрастает по сравнению с системами передачи, использующими HDSL, на 3 дБ - 6 дБ.

Данное преобразование позволяет в 16 раз уменьшить скорость передачи, что позволяет соответственно в 4 раза увеличить длину регенерационного участка при сохранении нормированных требований к его рабочему затуханию и уровню переходных влияний. Кроме того, при работе по одному многопарному кабелю систем, использующих сигнал TC-PAM 16, и других ЦСП, уменьшаются взаимные влияния. Следует учитывать, что при этом должны неукоснительно выполняться требования ограничения уровня сигнала и подавления его высших гармонических составляющих. Всё это позволяет сделать вывод о перспективности использования TC-PAM 16 в технологии «последней мили». В этом случае два оконечных цифровых устройства обмениваются данными по обычной телефонной линии со скоростью до 2,3 Мбит/с.

Применение системы кодирования TC-PAM и смещения частот для нисходящего и восходящего трафика предоставляет возможность оптимально использовать отведённую полосу частот. Считается, что такой метод модуляции гарантирует почти предельную скорость передачи. В отличие от кодирования 2B1Q или CAP, которые применяются в HDSL, спектр сигнала локализован в более узкой полосе частот. Это помогает избежать перекрестных помех (при совместной работе на одном кабеле) с оборудованием, функционирующем как по другим DSL-технологиям, так и по самой G.SHDSL.

В G.SHDSL эффективно используется адаптация скорости передачи, которая в этом случае может изменяться с шагом 8 кбит/с от минимальной величины 192 кбит/с до максимального значения 2,32 Мбит/с, при которой становится возможной скорости передача канала E1. Для этого с помощью специального протокола в процессе установления соединения модемы на обоих концах линии тестируют условия передачи сигнала. Получив результаты тестирования, модемы производят обмен сообщениями и определяют максимальную скорость передачи, допустимую при данных условиях (это особенно важно для определения типа обслуживания передаваемого трафика и формата передаваемых кадров). Максимальная длина соединения (7,5 км при скорости 192 кбит/с и более 3 км при 2,32 Мбит/с) при этом оказывается больше, нежели у других симметричных xDSL-технологий, работающих при тех же скоростях передачи. Применение эхоподавления обеспечивает полнодуплексную связь при всех значениях скорости передачи.

В G.SHDSL предусмотрена возможность использования для передачи информации одновременно двух пар, что позволяет увеличить предельную скорость передачи до 4624 кбит/с и обеспечивает необходимый уровень резервирования. Но главное, можно удвоить максимальную скорость, причём этого удается достигнуть при передаче по типовому симметричному кабелю, к которому подключен абонент. Стандартом ограничена максимальная задержка цифровой информации в канале передачи -- она составляет не более 500 мс. Дополнительно снизить задержки в канале можно за счет оптимального выбора протокола. Например, для IP трафика устанавливается протокол, который позволяет отказаться от передачи избыточной информации.

В отличие от ADSL и VDSL, G.SHDSL как нельзя лучше подходит для организации «последней мили». Так, при максимальной скорости передачи группового сигнала он может быть уплотнён 36-ю голосовыми каналами. Тогда как ADSL, где ограничивающим фактором является низкая скорость передачи от абонента к сети (640 кбит/с), позволяет организовать лишь 9 голосовых каналов, не оставляя места для передачи данных. Еще одна задача, которая успешно решена в G.SHDSL, -- это снижение энергопотребления оборудования. Поскольку для дистанционного питания промежуточного и абонентского оборудования используется одна пара, уменьшение его энергопотребления позволяет существенно улучшить эксплуатационные параметры линии.

По сравнению с вариантами построения линии по двухпарной (или четырёхпроводной) схеме, однопарные варианты обеспечивают существенный выигрыш по аппаратным затратам и, соответственно, надежности изделия. Ресурс снижения стоимости составляет до 30% для модемов и до 40% для регенераторов -- ведь каждая из пар требует включения в состав аппаратурного комплекса приемопередатчика HDSL, линейных цепей, элементов защиты и т. п. Казалось бы, новая технология решает большинство накопившихся проблем, и при её внедрении спрос на все прочие симметричные DSL-решения исчезнет. Однако большинство специалистов отмечают, что G.SHDSL нельзя рассматривать, как полную замену существующих симметричных технологий. Скорее всего, она является их дополнением. По этой причине в ближайшее время можно считать оптимальным вариантом использование аппаратных платформ, которые могут реализовать возможность использования всех основных технологий в рамках единой системы. Именно они позволят поставщику услуг выбирать для подключения абонента решение, оптимально соответствующее существующим условиям и решаемым задачам. Не надо, наверное, доказывать, что для нормальной работы сети необходимо обеспечить совместимость оборудования различных производителей. Это, в свою очередь, позволяет оператору и пользователю легко менять поставщика или приобретать абонентское и станционное оборудование от разных производителей. Таким образом, G.SHDSL представляет собой достаточно эффективный и экономичный способ решения проблемы «последней мили», и с помощью этой технологии можно успешно решать различные конкретные задачи.

Скорее всего, в своем нынешнем состоянии технология G.SHDSL претерпит изменения -- известно, что МСЭ (ITU) и Международный Институт Стандартов ETSI сейчас работают над спецификацией G.SHDSL.bis, которая позволит увеличить скорость передачи данных по одной паре с 2,312 Мбит/с до 3,840 Мбит/с (улучшенный код модуляции TC-PAM16), а в дальнейшем -- до 5,700 Мбит/с (TC-PAM32). При этом в реальных условиях эксплуатации (с учётом действующих на линиях помех, совместной работы с другими системами передачи и т. п.) дальность работы на максимальной скорости устройств с модуляцией TC-PAM16 должна составлять около 1,7 км (для потока 3,8 Мбит/с), а с модуляцией TC-PAM32 -- около 800 м (5,7 Мбит/с).

Чепусов Евгений, сотрудник компании СвязьКомплект

Совсем недавно системы высокоскоростной цифровой передачи по медным абонентским линиям были диковинкой. Прошло всего десятилетие — и уже далеко не всякий специалист по телекоммуникациям уверенно ориентируется в разнообразии их характеристик. Недавно появилась еще одна технология — G.shdsl. Рождалась она долго, но появилась сразу же в виде всемирного стандарта ITU-T (G.991.2) — все давно устали от хаоса несовместимого друг с другом оборудования различных производителей.

Немного предыстории

В начале 90-х годов развитие цифровых способов обработки сигнала привело к созданию HDSL. Эта технология сочетала в себе линейное кодирование 2B1Q и сложные алгоритмы эхоподавления. Первые варианты, работающие по двум парам, были созданы в США и быстро вытеснили старые цифровые системы передачи T1 ANSI (1544 Мбит/с), которые имели рабочую дальность чуть более километра. Все это произошло благодаря тому, что HDSL, обеспечивая большую дальность (3,5 км на проводе 0,4 мм), позволил отказаться от регенераторов и существенно снизить затраты на монтаж и эксплуатацию вновь вводимых линий.

Аналогичная картина складывалась в это время и в Европе — получили распространение варианты HDSL, которые обеспечивают передачу потока Е1 ETSI (2048 Кбит/с). Сначала появился вариант, который для получения большей скорости при той же дальности использовал три пары. Скорость передачи по каждой из пар при этом была та же, что и у американского варианта (748 Кбит/с). Затем, был стандартизован двухпарный вариант, у которого скорость по каждой из пар была выше (1168 Кбит/с) при меньшей рабочей дальности (около 3 км на проводе 0,4 мм). Но даже в этом случае дальность она оказывалась выше, чем у оборудования с линейным кодом HDB3 (рис. 1).


Рис. 1. Эволюция систем передачи.


Всем опытом эксплуатации HDSL доказал свои высокие эксплуатационные характеристики. В подавляющем большинстве случаев монтаж HDSL оборудования проводится без дополнительного подбора пар или кондиционирования линии. Благодаря этому сегодня большая часть линий Е1 подключена с применением HDSL оборудования. Более того, сам факт появления технологии, которая обеспечила возможность экономичных решений по организации цифровых подключений абонентов, привел к тому, что число таких подключений стало стремительно расти. Иными словами, именно появление HDSL стало своеобразным катализатором развития цифровых сетей.

В свою очередь, развитие цифровых сетей создало спрос на цифровые системы передачи xDSL с другими характеристиками. Так появилась сравнительно низкоскоростная технология IDSL, основными достоинствами которой были работа по одной паре и низкая стоимость, обусловленная применением стандартных компонентов, производимых для абонентского ISDN оборудования. Так родились скоростные и асимметричные ADSL, VDSL со всеми своими разновидностями, созданные для подключения индивидуальных абонентов жилого сектора по их существующей телефонной линии и без отказа от использования этой линии для аналоговой или цифровой (ISDN BRI) телефонии. Наконец, так были разработаны обеспечившие увеличенную дальность работы разновидности HDSL с другими способами линейного кодирования (CAP) и адаптивные разновидности HDSL с возможностью изменять скорость передачи в линии, подстраивая ее под характеристики линии.

Производители, каждый на свой лад, стали задумываться о реализации вариантов HDSL систем, которые бы работали по одной паре при полной скорости. Дело в том, что параллельно с развитием xDSL технологий росло и число используемых ими линий. Из-за этого большинство операторов во всем мире уже сегодня отмечают острую нехватку меди на абонентском участке — почти вся она «съедена» xDSL линиями. А ведь цифровизация еще не закончена. Где-то к 1996 году появились однопарные варианты HDSL. Но они не могли решить проблему из-за несовместимости с ADSL — спектр сигнала таких систем частично перекрывался со спектром сигнала ADSL от АТС к клиенту.

Первыми забили тревогу операторы США, и уже в начале 1996 года перед комитетом ANSI (T1E1.4) была поставлена задача подобрать для дальнейшего развития технологию, которая при симметричных потоках данных и использовании одной пары позволяла бы обеспечить:

. рабочую дальность не меньшую, чем HDSL;

. устойчивость к тем же физическим характеристикам линии, что и HDSL (затухание, взаимное влияние, отражения от неоднородностей и отводов);

. использование для оказания тех же видов услуг, что и HDSL;

. надежную и устойчивую передачу на реальных линиях со всеми присущими им дефектами;

. «сосуществование» с другими технологиями (HDSL, ISDN, ADSL);

. снижение эксплуатационных затрат по сравнению с HDSL.

Новая технология, появившаяся в результате огромной трехлетней работы, получила название HDSL2 (нужно отметить, что работа над ее стандартизацией ввиду некоторых разногласий между основными производителями пока не окончена и стандарт существует в виде рабочей версии Т1 .418—2000). Изначально в качестве основы для реализации HDSL2 рассматривались симметричная передача с эхоподавлением (SEC) и частотное мультиплексирование (FDM), но обе были отклонены из-за присущих им недостатков. Первая имеет серьезные ограничения в условиях помех на ближнем конце, что делает ее неприменимой для массового развертывания. Вторая, хотя и свободна от недостатков первой, но требует использования более широкого спектра и не обеспечивает требований по взаимному влиянию с системами передачи других технологий.

В результате, в качестве основы была принята система передачи с перекрывающимся, но несимметричным распределением спектральной плотности сигнала, передаваемого в различных направлениях, использующая 16-уровневую модуляцию PAM (Pulse Amplitude Modulation). Выбранный способ модуляции PAM-16 обеспечивает передачу трех бит полезной информации и дополнительного бита (кодирование для защиты от ошибок) в одном символе. Сама по себе модуляция PAM не несет в себе ничего нового. Хорошо известная 2B1Q — это тоже модуляция PAM, но четырехуровневая. Использование решетчатых (Trellis) кодов, которые за счет введения избыточности передаваемых данных позволили снизить вероятность ошибок, дало выигрыш в 5 dB. Результирующая система получила название TC-PAM (Trellis coded PAM). При декодировании в приемнике используется весьма эффективный алгоритм Витерби (Viterbi). Дополнительный выигрыш получен за счет применения прекодирования Томлинсона (Tomlinson) — искажении сигнала в передатчике на основе знания импульсной характеристики канала. Суммарный выигрыш за счет использования такой достаточно сложной технологии кодирования сигнала составляет до 30% по сравнению с ранее используемыми HDSL/SDSL системами.



Рис. 2. Спектральная плотность сигнала G.shdsl.


Но все-таки, ключевым элементом успеха новой технологии является идея несимметричного распределение спектра, получившее название OPTIS (Overlapped PAM Transmission with Interlocking Spectra) и послужившее основой HDSL2 и, впоследствии, G.shdsl. При выборе распределения спектральной плотности для OPTIS решалось одновременно несколько задач (рис. 2). В первой области диапазона частот (0—200 кГц), где переходное влияние минимально, спектральные плотности сигналов, передаваемых в обе стороны одинаковы. Во втором диапазоне частот (200—250 кГц), спектральная плотность сигнала от LTU (оборудования на узле связи) к NTU (абонентскому оборудованию) уменьшена, чтобы снизить его влияние на сигнал в обратном направлении в этой области частот. Благодаря этому переходные влияния на ближнем конце в обоих диапазонах частот оказываются одинаковыми. В свою очередь мощность сигнала от NTU к LTU во втором диапазоне частот уменьшена, что даёт дальнейшее улучшение отношения сигнал/шум в этой области частот. Следует отметить, что это уменьшение не ухудшает отношения сигнал/шум на входе NTU по двум причинам: во-первых, полоса частот сигнала от LTU к NTU увеличена по сравнению с полосой частот сигнала в обратном направлении, и, во-вторых, абонентские модемы NTU пространственно разнесены, что также уменьшает уровень переходной помехи. В третьем диапазоне частот спектральная плотность сигнала от LTU к NTU максимальна, поскольку сигнал в обратном направлении в этой области почти отсутствует, и отношение сигнал/шум для сигнала на входе NTU оказывается высоким. Выбранная форма спектра является оптимальной не только в случае, когда в кабеле работают только системы HDSL2. Она будет оптимальна и при работе с ADSL, поскольку сигнал HDSL2 от NTU к LTU выше частоты 250 кГц, где сосредоточена основная мощность составляющих нисходящего потока ADSL, практически подавлен. Предварительные расчёты показали, что помехи от системы HDSL2 в нисходящем тракте системы ADSL (от LTU к NTU) меньше помех от системы HDSL, работающей по двум парам, и существенно меньше помех от системы HDSL, использующей код 2B1Q и работающей по одной паре на полной скорости.

На арену выходит G.shdsl

В 1998 году инициативу ANSI подхватила и остальная часть мира. В ITU-T началась работа над всемирным стандартом G.shdsl (стандарт G.991.2 утвержден в феврале 2001 г.), европейской версией этого стандарта занимается и ETSI (сейчас он оформлен в виде спецификации TS 101524).

В основу G.shdsl были положены основные идеи HDSL2, получившие дальнейшее развитие. Была поставлена задача, используя способы линейного кодирования и технологию модуляции HDSL2, снизить взаимное влияние на соседние линии ADSL при скоростях передачи выше 784 Кбит/с.

Поскольку новая система использует более эффективный линейный код по сравнению с 2B1Q, то при любой скорости сигнал G.shdsl занимает более узкую полосу частот, чем соответствующий той же скорости сигнал 2B1Q. Поэтому помехи от систем G.shdsl на другие системы xDSL имеют меньшую мощность по сравнению с помехами, создаваемыми HDSL типа 2B1Q. Более того, спектральная плотность сигнала G.shdsl имеет такую форму, которая обеспечивает его почти идеальную спектральную совместимость с сигналами ADSL.

Отмеченные свойства G.shdsl являются чрезвычайно важными для обеспечения устойчивой работы в условиях широкого внедрения xDSL технологий в будущем. Результаты анализа устойчивости работы, которые выполнялись на основе используемых ранее шумовых моделей (в том числе и описанных в стандартах) могут оказаться недостоверными. Таким образом, оператор связи, развертывая системы передачи сегодня, не будет иметь гарантии, что они сохранят устойчивую работоспособность в будущем, когда на соседних парах заработают другие системы.

Шумовые модели, более точно отражающие современное состояние внедрения цифровых технологий передачи на абонентской сети предложены международной инициативной организацией FSAN (Full Service Access Networks), которая с 1995 г. занимается разработкой требований и поиском консенсуса между интересами операторов и различных производителей телекоммуникационного оборудования, работающих в области построения мультисервисных сетей узкополосного и широкополосного абонентского доступа. Организацией FSAN были разработаны четыре оценочные модели шумов, отличающиеся количеством и составом эксплуатируемых в одном кабеле систем передачи (табл. 1). Расчеты по новым моделям достаточно сложны, но именно они могут дать представление о реальной работоспособности технологий xDSL на этапе массового развертывания цифрового абонентского доступа. С учетом сказанного, стоит весьма критически относиться к результатам оценки устойчивости работы, если для них использованы хоть и предусмотренные стандартами, но морально устаревшие шумовые модели.

Таблица 1. Модели для оценки влияния шумов, предложенные FSAN.

Модель A, высокий уровень внедрения xDSL технологий

около 90 пар

около 90 пар

HDSL/2B1Q (2 пары)

около 40 пар

ADSL на аналоговой телефонной линии

около 90 пар

ADSL на ISDN BRI

около 90 пар

Модель B, средний уровень внедрения xDSL технологий

около 15 пар

около 10 пар

HDSL/2B1Q (2 пары)

около 4 пар

около 10 пар

ADSL на ISDN BRI

около 5 пар

Модель С, средний уровень внедрения xDSL технологий при наличии старых систем цифровой передачи с кодом HDB3

около 15 пар

около 10 пар

HDSL/2B1Q (2 пары)

около 4 пар

около 10 пар

ADSL на ISDN BRI

около 5 пар

около 4 пар

Модель D, эталонная

около 49 пар

Для того, чтобы оценить расхождения в полученных по старым и новым моделям результатах и убедиться в описанных выше достоинствах технологии G.shdsl, можно воспользоваться результатами, опубликованными компанией Schmid Telecom в своей презентации, посвященной началу выпуска семейства Watson 5, реализованного на основе технологии G.shdsl (табл. 2). Поскольку среди оборудования, производимого этой компанией ранее, использованы почти все основные разновидности xDSL технологий, то результат весьма нагляден. Везде, где значения запаса по шумам имеют отрицательную величину, рассматриваемое оборудование не будет работать в заданной шумовой моделью ситуации. Выигрыш, который имеет G.shdsl по сравнению с другими технологиями, очень хорошо заметен. Следует обратить внимание и на существенные расхождения результатов, полученных по новой модели FSAN и старой, общепринятой, методике оценки по ETSI. Конечно, результаты оценки оборудования других производителей могут отличаться от представленных Schmid Telecom, но, учитывая широко известное качество модемов Watson, отличия будут скорее всего несущественными.

Таблица 2. Сравнение запаса по шумам оборудования Schmid Telecom на основе расчета по шумовым моделям FSAN.

Запас по шумам для моделей FSAN (дБ)

Оборудование

Число пар / линейный код

Tx
(дБм)

Запас по шумам модель ETSI (дБ)

2,4
2,5

1 / PAM4 (2B1Q) ***

15,53
15,98

12,73
15,67

Примечания:
Сравнение производилось для скорости 2,032 Мбит/с при линии длинной 2400 м, провод D=0,4 мм в ПЭ изоляции.
* Для увеличенного уровня передачи NT.
** Нисходящий поток с использованием PAM8.
*** Для сравнения использовано оборудование другого производителя.

Есть и другие достоинства G.shdsl. По сравнению с двухпарными вариантами, однопарные варианты обеспечивают существенный выигрыш по аппаратным затратам и, соответственно, надежности изделия. Ресурс снижения стоимости составляет до 30% для модемов и до 40% для регенераторов — ведь каждая из пар требует приемопередатчика HDSL, линейных цепей, элементов защиты и т.п.

В целях поддержки клиентов различного уровня, в G.shdsl решили предусмотреть возможность выбора скорости в диапазоне 192 Кбит/с — 2320 Кбит/с с инкрементом 8 Кбит/с. За счет расширения набора скоростей передачи оператор может выстроить маркетинговую политику, более точно приближенную к потребностям клиентов. Кроме того, уменьшая скорость, можно добиться увеличения дальности в тех случаях, когда установка регенераторов невозможна. Так, если при максимальной скорости рабочая дальность составляет около 2 км (для провода 0,4 мм), то при минимальной — свыше 6 км (рис. 3). Но это еще не все. В G.shdsl предусмотрена возможность использования для передачи данных одновременно двух пар, что позволяет увеличить предельную скорость передачи до 4624 Кбит/с. Но, главное, можно удвоить максимальную скорость, которую удается получить на реальном кабеле, по которому подключен абонент.



Рис. 3. Возможности систем передачи G.shdsl.


Для обеспечения взаимной совместимости оборудования различных производителей в стандарт G.shdsl был инкорпорирован стандарт G.hs.bis (G.844.1), описывающий процедуру инициализации соединения. Предусмотрено два варианта процедуры. В первом оборудование LTU (установленное на АТС) диктует параметры соединения NTU (оборудованию клиента), во втором — оба устройства «договариваются» о скорости передачи с учетом состояния линии. Учитывая неизвестные начальные условия, при обмене данными во время инициализации для гарантированного установления соединения применяется низкая скорость передачи и один из классических методов модуляции (DPSK).

Кроме установки скорости, G.hs описывает и порядок выбора протокола в процессе установки соединения. Чтобы обеспечить совместимость со всеми используемыми на сегодня сервисами, фреймер G.shdsl модема должен реализовать возможность работы с такими протоколами, как E1, ATM, IP, PCM, ISDN. Для обеспечения гарантированной работоспособности приложений реального времени, стандартом G.shdsl ограничена максимальная задержка данных в канале передачи (не более 500 мс). Наиболее используемыми приложениями этого вида для G.shdsl являются передача голоса VoDSL во всех ее разновидностях (PCM — обычный цифровой канал телефонии, VoIP — голос через IP и VoATM- голос через ATM) и видеоконференцсвязь.

За счет оптимального выбора протокола во время инициализации в G.shdsl удается дополнительно снизить задержки в канале передачи. Например, для IP трафика устанавливается соответствующий протокол, что позволяет отказаться от передачи избыточной информации, по сравнению с IP пакетами, инкапсулированными в ATM ячейки. А для передачи цифровых телефонных каналов в формате ИКМ непосредственно выделяется часть полосы DSL канала.

Стоит отметить, что упомянутые выше передача голоса и видеоконференцсвязь требуют передачи симметричных потоков данных в обе стороны. Симметричная передача необходима и для подключения локальных сетей корпоративных пользователей, которые используют удаленный доступ к серверам с информацией. Поэтому, в отличие от других высокоскоростных технологий (ADSL и VDSL), G.shdsl как нельзя лучше подходит для организации последней мили. Так, при максимальной скорости она обеспечивает передачу 36 стандартных голосовых каналов. Тогда как ADSL, где ограничивающим фактором является низкая скорость передачи от абонента к сети (640 Кбит/с), позволяет организовать лишь 9 голосовых каналов, не оставляя места для передачи данных.

Еще одна задача, которая успешно решена в G.shdsl — снижение энергопотребления. Поскольку для дистанционного питания используется одна пара, важность этой задачи трудно переоценить. Еще одна положительная сторона — снижение рассеиваемой мощности — открывает путь к созданию высоко интегрированного станционного оборудования.

Новые возможности оборудования — свобода выбора операторов

Как следует из вышеизложенного, G.shdsl имеет целый ряд достоинств по сравнению с другими xDSL технологиями. Оперируя основными показателями, можно сказать, что G.shdsl, по сравнению с однопарным вариантом 2B1Q HDSL, позволяет увеличить на 35—45 % скорость передачи при той же дальности или увеличить дальность на 15—20 % при той же скорости. Кроме того, в G.shdsl изначально заложены базовые возможности для ее использования на последней миле в сетях PCM (ИКМ), ATM, IP, FR. Благодаря этому G.shdsl имеет самую широкую область применения (рис. 4).



Рис. 4. Примеры использования оборудования G.shdsl.


Казалось бы, новая технология станет панацеей, и спрос на все прочие симметричные xDSL технологии исчезнет, а на асимметричные — существенно снизится. Однако, как большинство специалистов по эксплуатации оборудования, так и большинство производителей оборудования G.shdsl, отмечают, что новую технологию нельзя рассматривать как полную замену семейств HDSL/SDSL/MSDSL. Все они сходятся во мнении, что она не может служить их заменой, а является дополнением. Поэтому в ближайшее время станут выигрывать аппаратные платформы, которые реализуют возможность использования всех основных технологий в рамках единой системы (рис. 5). Именно они позволят оператору выбирать для подключения абонента ту xDSL технологию, которая оптимально подходит для существующих условий и решаемых задач.



Рис. 5. Пример использования универсальной xDSL платформы.


Подтверждение этой концепции находит подтверждение в серьезном успехе оборудования WATSON компании SchmidTelecom, хорошо известном на российском рынке. Эта универсальная платформа всегда включала в себя компоненты, использующие все основные технологии линейного кодирования (2B1Q и CAP) на пределе их возможностей. Теперь в нее включено семейство WATSON5, полностью реализующее все требования стандарта G.shdsl, включая G.hs.bis. Такие малые сроки разработки объясняются просто — Schmid Telecom работает в теснейшей связи с производителями комплектующих и участвовал в разработке прототипных вариантов оборудования на всех заключительных этапах создания стандарта G.shdsl. Нужно отметить, что такую степень информированности и участия в процессе разработки могут позволить себе лишь несколько производителей xDSL оборудования, являющихся лидерами в этой области. Только такие компании и смогут предложить оборудование G.shdsl на рынок в ближайшем обозримом будущем.

Однако, уже сегодня оборудование G.shdsl предлагают даже небольшие компании. Объяснение этого факта простое — речь идет об оборудовании, частично выполняющем требования стандарта G.shdsl. Благодаря тому, что оно реализует не все описанные в стандарте функции или реализует их с использованием упрощенных нестандартных алгоритмов, оно стоит весьма недорого. Обычно, в таких устройствах совместимость со стандартом ограничена применением линейного кодирования TC-PAM. Область применения этих устройств за рубежом ограничена приложением «точка-точка», использующимся для объединения учрежденческих АТС и сегментов локальных сетей учреждений. Отличить такие устройства просто — они не имеют вариантов с высокой плотностью оборудования (несколько модемов на одном модуле), ориентированных на установку на узлах связи.

В заключение хочется обратить внимание на тот факт, что одним из основополагающих моментов в стандарте G.shdsl, который будет обуславливать успех этой технологии на рынке телекоммуникационного оборудования, является совместимость оборудования различных производителей. Эта возможность позволит операторам в будущем легко менять поставщика или приобретать абонентское и станционное оборудование у различных поставщиков, что уже сегодня повсеместно практикуется для ADSL. Проверкой совместимости занимается специально созданная ведущими производителями лаборатория IOL (IterOperability Lab, University of New Hampshire), работающая во взаимодействии с DSL Форумом — основоположником «моды» xDSL. Проверка является весьма дорогостоящим процессом, поэтому только серьезные поставщики смогут обоснованно гарантировать, что их оборудование полностью совместимо со стандартами G.shdsl и G.hs.bis. Именно на их оборудовании мы и рекомендуем остановить свой выбор.

Loading...Loading...