Методы и средства измерения отклонений от прямолинейности. Способ контроля отклонения от прямолинейности и устройство для его осуществления Контроль поверочными линейками и плитами


К атегория:

Измерения

Инструменты для контроля плоскостности и прямолинейности

Под измерением понимается сравнение одноименной величины (длины с длиной, угла с углом, площади с площадью и т. д.) с величиной, принимаемой за единицу.

Все средства измерения и контроля, применяемые в слесарном деле, можно разделить на контрольно-измерительные инструменты и измерительные приборы.

К первой группе относят:
– инструменты для контроля плоскостности и прямолинейности;
– плоскопараллельные концевые меры длины (плитки);
– штриховые инструменты, воспроизводящие любое кратное или дробное значение единицы измерения в пределах шкалы (штангенинструменты, угломеры с нониусом);
– микрометрические инструменты, основанные на действии винтовой пары (микрометры, микрометрические нутромеры и глубиномеры).

К группе измерительных приборов (вторая группа) относят:
– рычажно-механические (индикаторы, индикаторные нутромеры, рычажные скобы, миниметры);
– оптико-механические (оптиметры, инструментальные микроскопы, проекторы, интерферометры);
– электрические (профилометры и др.). Указанные выше измерительные средства являются точным, дорогостоящим инструментом, поэтому при пользовании им и хранении необходимо соблюдать правила, изложенные в соответствующих инструкциях.

Лекальные линейки изготовляют трех типов: с двусторонним скосом (ЯД) длиной 80, 125, 200, 320 и (500) мм; трехгранные (ЛТ) - 200 ,и 320 мм и четырехгранные (ЛЧ) – 200, 320 и (500) мм (рис. 365, а-в). Проверка прямолинейности лекальными линейками производится по способу световой щели (на просвет) или по способу следа. При проверке прямолинейности по способу световой щели лекальную линейку накладывают острой кромкой на проверяемую поверхность, а источник света помещают сзади линейки и детали. Линейку держат строго вертикально на уровне глаз, наблюдая за просветом между линейкой и поверхностью в разных местах по длине линейки. Наличие просвета между линейкой и деталью свидетельствует об отклонении от прямолинейности. При достаточном навыке такой способ контроля позволяет уловить просвет от 0,003 до 0,005 мм (3 - 5 мкм).

При проверке способом следа рабочим ребром линейки проводят по чистой проверяемой поверхности. Если поверхность прямолинейна, на ней останется сплошной след; если нет, то след будет прерывистым (пятнами).

Поверочные линейки с широкой рабочей поверхностью изготовляют четырех типов (сечений): прямоугольные ШП, двутавровые ШД, мостики ШМ, угловые трехгранные УТ.

В зависимости от допустимых отклонений от прямолинейности поверочные линейки типов ШП, ШД и ШМ делят на три класса: 0,1 и 2-й, а линейки типа УТ - на 2 класса: 1-й и 2-й. Линейки 0-го и 1-го классов применяют для контрольных работ высокой точности, а линейки 2-го класса - для монтажных работ средней тосности.

Рис. 1. Линейки лекальные поверочные: а - ЛД с двусторонним скосом, б - J1T трехгранйые, в - ЛЧ четырехгранные

Рис. 2. Проверка лекальной линейкой по способу световой щели на просвет: а - положение глаза, б - установка линейки, 1 - линейка, 2 - плита

Рис. 3. Линейки с широкой рабочей поверхностью: а - прямоугольные ШП, б - двутавровые ШД, в - мостик ШМ, г - угловая трехгранная (клинья) УТ

Рис. 4. Проверка прямолинейности линейками: а - ШД, б - с мостиком ШМ с помощью полосок папиросной бумаги

Проверка прямолинейности и плоскостности этими линейками производится по линейным отклонениям и по краске (способ пятен). При измерении линейных отклонений от прямолинейности линейку укладывают на проверяемую поверхность или на две мерные плитки одинакового размера. Просветы между линейкой и контролируемой поверхностью измеряют щупом.

Точные результаты дает применение полосок папиросной бумаги, которые с определенными интервалами укладывают под линейку. Вытягивая полоску из-под линейки, по силе прижатия каждой из них судят о величине отклонения от прямолинейности.

При проверке на краску рабочую поверхность линейки покрывают тонким слоем краски (сажа, сурик), затем линейку накладывают на проверяемую поверхность и плавно без нажима перемещают по проверяемой поверхности. После этого линейку осторожно снимают и по расположению, количеству, величине пятен на поверхности судят о прямолинейности поверхности. При хорошей плоскостности пятна краски располагаются равномерно по всей поверхности. Чем больше количество пятен на проверяемой поверхности квадрата 25х 25 мм, тем выше плоскостность. Трехгранные поверочные линейки изготовляют с углами 45, 55 и 60°.

Поверочные плиты применяют главным образом для проверки широких поверхностей способом на краску, а также используют в качестве вспомогательных приспособлений при различных контрольных работах в цеховых условиях. Плиты делают из серого мелкозернистого чугуна. По точности рабочей поверхности плиты бывают четырех классов: 0,1, 2 и 3-й; первые три класса - поверочные плиты, четвертый - разметочные. Проверка на краску с помощью поверочных плит выполняется, как описано выше.

Плиты оберегают от ударов, царапин, загрязнения, после работы тщательно вытирают, смазывают минеральным маслом, скипидаром или вазелином и накрывают деревянным щитом (крышкой).

Линейки ШД, ШМ и УТ недопустимо хранить прислоненными друг к другу, к стене под некоторым углом: они прогибаются и становятся негодными.



К атегория:

Помощь рабочему-инструментальщику

Инструменты для контроля прямолинейности и плоскостности

Для контроля плоскостности и прямолинейности применяют поверочные линейки, плиты, плоские стеклянные пластины и различные устройства специального назначения.

Линейки типов ЛД, ЛТ и ЛЧ являются наиболее распространенными инструментами для контроля прямолинейности. Их называют лекальными линейками. Они бывают с двусторонним скосом, трехгранные и четырехгранные. Их изготовляют 0-го и 1-го классов точности из стали марки X или ШХ15 и термически обрабатывают до твердости HRC 58.

При проверке измерительных инструментов применяют линейки 0-го класса точности.

Прямолинейность поверхностей контролируют ли-неиками двумя способами: на просвет и на краску. При контроле на просвет линейку острым ребром наклады-ают на контролируемую поверхность, а источник света омещают сзади. При отсутствии отклонений от прямолинейности и плоскостности свет нигде не должен пробиваться. Линейное отклонение определяют на глаз или путем сравнения с образцом просвета. Минимальная ширина щели, улавливаемая глазом, составляет 3- 5 мкм.

Примеры контроля обработанных поверхностей лекальными линейками показаны на рис. 1, а - д.

При контроле методом на краску на поверочную плиту или линейку наносят тонкий слой разведенной в масле лазури или сажи, а затем накладывают на окрашенную поверхность проверяемую поверхность и слегка притирают к ней. Качество поверхности оценивают по равномерности нанесения пятен и их числу на площади размером 25X25 мм в нескольких местах. Разница в количестве пятен на соседних площадках должна быть не более двух-трех.

Рис. 1. Примеры контроля линейками.

Линейки типов ШП, ШД, ШМ и УТ с широкой рабочей плоскостью применяют для контроля прямолинейности и плоскостности деталей большого размера (400 мм и более). Их называют поверочными линейками.

Линейки ШП и ШД 0-го, 1-го и 2-го классов точности изготовляют из стали марки У7 с твердостью рабочей поверхности HRC50. Они блужат для контроля прямолинейности методом на просвет или с помощью Щупа.

Линейки типов ШМ и УТ тех же классов точности выполняют из серого чугуна СЧ18-36 или из высокопрочного ВЧ45-5 твердостью НВ 170…229. Предназначены они для контроля методом на краску.

Поверочные плиты применяют для проверки плоскостности методом на краску и для использования в качестве вспомогательного приспособления при различных контрольных операциях.

Поверочные плиты изготовляют пяти классов точности: 01-го, 0-го, 1-го, 2-го и 3-го. Рабочие поверхности плит для контроля методом на краску должны быть шаброваны и отличаться точной плоскостностью, что достигается шабрением методом трех плит. Поверочные плиты, предназначенные для иных целей, могут быть отшлифованы или притерты. Разметочные плиты могут быть изготовлены чистовым строганием. Их рабочая поверхность может быть разделена на прямоугольники неглубокими продольными и поперечными канавками.

Рис. 2. Проверочные плиты.

При контроле плоскостности и качества рабочих поверхностей шаброванных плит методом на краску число пятен в квадрате со стороной 25 мм должно быть: для плит классов 01 и 0 - не менее 30, класса 1 - не менее 25 и класса 2 - не менее 20.

Изготовляют плиты размерами от 250X250 мм до 4000X1600 мм из серого перлитного чугуна СЧ28-52 без твердых включений и пористости. Твердость рабочей поверхности должна составлять НВ 200…220.

При контроле методом на краску на рабочую поверхность плиты накладывают плиту (или деталь) с контролируемой поверхностью и слегка притирают. Плоскостность и прямолинейность оценивают по равномерности нанесения пятен и их числу на площади 25×25 мм в нескольких местах.

Плоские стеклянные пластины. Для измерения концевых мер длины и для контроля притираемости и плоскостности их измерительных поверхностей, а также поверхностей калибров и других инструментов применяют плоские стеклянные пластины.

В зависимости от назначения различают два типа пластин: – нижние (опорные), к которым притираются плоскопараллельные концевые меры длины при измерении их интерференционным методом. Эти пластины служат также для проверки притираемости и плоскостности измерительных поверхностей концевых мер, калибров и других инструментов. Они выпускаются диаметром 60, 80, 100, 120 мм и толщиной 20, 25 и 30 мм; – верхние для измерения плоскопараллельных концевых мер длины интерференционным методом.

Рис. 3. Плоские стеклянные пластинки.

Отклонения от плоскостности рабочих поверхностей не должны превышать 0,03-0,05 мкм для пластин 1-го и 0,1 мкм для пластин 2-го классов точности.

В соответствий со стандартом промышленность выпускает плоскопараллельные стеклянные пластины и наборы из них для проверки интерференционным методом плоскостности и взаимной параллельности измерительных поверхностей микрометров и рычажных скоб. Наборы состоят из четырех пластин диаметром 30, 40 и 50 мм. По толщине пластины отличаются друг ог Друга на 0,125 мм. Так, в наборе № 1 разряда 1 пластины имеют следующие размеры: 15,00; 15,12; 15,25 и 15,37 мм.

Сущность интерференционного метода контроля заключается в следующем. На контролируемую поверхность плотно накладывают плоскую стеклянную пластину и затем слегка приподнимают один ее край до образования угла менее Г. Между контролируемой поверхностью и пластиной создается тонкая воздушная прослойка в форме клина. Если на стеклянную пластину направить пучок световых лучей, то каждый луч, пройдя через пластину, отразится от ее нижней плоскости FH в точке А, а часть их преломится и упадет на контролируемую поверхность, отразится от нее и, преломившись в точке Ь, выйдет из клина. Луч, например, будет интерферировать с лучом, падающим в точку С. На поверхности будет наблюдаться ряд интерференционных полос. При дневном свете они окрашены в различные цвета, а если пользоваться однородным светом, пропуская его через зеленый или желтый светофильтр, то будет наблюдаться чередование черных полос с полосами, ярко окрашенными в ка-кой-либо определенный цвет.

Интерференционные полосы располагаются таким образом, что вдоль каждой из них расстояние от поверхности пластины до контролируемой поверхности будет одинаковым. Расстояние между двумя полосами соответствует изменению толщины воздушного клина на 0,25 мкм. Следовательно, изменение толщины воздушного клина между пластиной и контролируемой поверхностью на 1 мкм соответствует появлению четырех полос.

В тех случаях, когда контролируемая поверхность представляет собой точную плоскость (отклонение от плоскопараллельности около 0,25 мкм), в месте соприкосновения двух поверхностей наблюдаемые полосы будут прямыми и параллельными. В тех же случаях, когда контролируемая поверхность доведена до точности стеклянной пластины, интерференционные полосы исчезнут и будет наблюдаться равномерная окраска одного цвета. При контроле поверхностей, изготовленных с отклонениями, наблюдается искривление интерференционных полос. По характеру их искривления можно судить о выпуклости или вогнутости поверхности и легко определить величину этого отступления от плоскостности.

Рис. 4. Сущность интерференционного метода контроля.

Две контролируемые поверхности, имеющие выпуклость и вогнутость, показаны на рис. 4,б. Чтобы установить, имеется ли на поверхности выпуклость или вогнутость, нужно определить положение клина, а расширение его направлено в ту сторону, куда двигаются полосы при легком нажиме на стеклянную пластину. Если в сторону расширения клина направлена” выпуклость интерференционных полос, то поверхность выпуклая, если же - вогнутость, то поверхность вогнутая.

Величину искривления можно определить следующим образом. Если мысленно провести прямую, касающуюся полосы в середине, то можно увидеть, что края полосы смещены относительно середины на одну полосу, т. е. расстояние между поверхностями детали и пластины изменяется на 0,25 мкм. Следовательно, величина выпуклости составляет 0,25 мкм. Из рис. 4, в видно, что контролируемая поверхность имеет вогнутость в полполосы, т. е. 0,125 мкм.

Интерференционный способ применяется для контроля поверхностей размерами до 100X100 мм.


Измерение специальным прибором для измерения отклонений от прямолинейности 1 - измеряемая деталь; 2 – предметный стол; 3 - образец прямолинейности (направляющая прямолинейного перемещения); 4 - измерительный преобразователь; 5 – электронный блок; 6 - компьютер; 7 - самописец, графопостроитель или печатающее устройство

Измерение с помощью КИМ 1 - измеряемая деталь; 2 - координатная измерительная машина; 3 - измерительная головка

Технические характеристики КИМ DEA Global 05 -05 -05 n Перемещения: X: 500 мм Y: 500 мм Z: 500 мм n Точность: 1. 7+L/333 мкм n Динамика: 3 D скорость: 516 мм/c 3 D ускорение: 1700 мм/с2 7

Проверка с помощью поверочных линеек Длина линейки, мм Допустимые отклонения от прямолинейности, мкм Вес, кг Класс 0 Класс 1 200 1, 6 2, 5 0, 32 0 320 1, 6 2, 5 0, 85 0

Компарационные методы измерения отклонений от прямолинейности 1 - проверяемая поверхность; 2 - корпус компаратора; 3 - измерительные головки (ИГ) с качающимися плоскими измерительными наконечниками; 4 - неподвижные опоры

Измерение зрительной трубой и целевой маркой 1 - контролируемая поверхность; 2 - зрительная труба, укрепленная на жесткой регулируемой стойке; 3 - целевая марка; 4 - специальная стойка для целевой марки

Измерение оптической линейкой 1 - микрометр; 2 - щуп; 3 - измерительная каретка; 4 - опоры; 5 - линейка; 6 - бифиляр; 7- визирный штрих

Измерение оптической линейкой Наименование основных параметров ИС-36 М ИС-43 Пределы измеряемых отклонений поверхности от прямолинейности и плоскостности, мм: ± 0, 4 ± 0, 2 Пределы длин измеряемых поверхностей, мм. 200 - 1600 200 - 800 Цена деления шкалы отсчетного устройства, мм. 0, 001 0, 0005 Пределы допускаемой погрешности прибора, мм. ± (0, 001 + 0, 1/h.) где h - измеряемое отклонение в мм. ± (0, 0005 + 0, 1/h.) где h - измеряемое отклонение в мм.

Измерение относительных изменений наклона отдельных участков профиля уровнями 1 - контролируемая поверхность; 2 - двухопорный измерительный мостик; 3 – уровень

Ампульные уровни Длина рабочей поверхности, мм Погрешность на одном делении, мм/м 0, 02 150, 200, 250 Цена деления, мм/м ± 0, 006 0, 05 ± 0, 015 0, 10 ± 0, 030 0, 15 ± 0, 040

Микрометрические уровни Общий диапазон измерений составляет ± 10 мм/м (± 34"). Погрешность измерения на небольших интервалах находится в пределах цены деления (± 0, 01 мм/м или ~± 2"), на всем диапазоне измерения - в пределах ± 0, 02 мм/м, т, е, ~± 4"

Индуктивные уровни 1 – корпус, 2, 4, 6 – пружины, 3 - опорная пластина, 5 – регулировочные винты, 7 – нити, 8 – маятник, 9 – якорь, 10 - катушка

Индуктивные уровни Электронный уровень Tesa Microbevel 1 Электронный уровень Таливел 5 | Taylor Hobson Диапазон измерения ± 600 сек (± 3 мм/м) Погрешность 0. 2 сек ± 3% показаний

Емкостные уровни 2 3 4 Принцип действия емкостного уровня заключается в маятниковых свойствах диска 2 весом около одного грамма, который находится на пружинных подвесах 1 между плоскими электродами 3 и 4, с которыми образует дифференциальный конденсатор

Автоколлимационный метод Предел измерения Цена деления АК-0, 25 6" 0, 25"" АК-0, 5 10" 0, 5"" АК-1 12" 1"" Прибор Предел допускаемой погрешности

Измерение с помощью лазерного интерферометра 1 - измеряемая поверхность; 2 - двухопорный измерительный мостик; 3 - отражатель с двумя угловыми оптическими призмами; 4 - отделенный интерферометр; 5 – лазер; 6 - электронная часть с цифровой индикацией или с регистрирующим самописцем

Интерферометр Майкельсона 3 4 2 1 5 7 6 1 - источник; 2 – полупрозрачная пластина; 3 - отражатель; 4 – подвижный отражатель; 5 – точечная диафрагма; 6 – фотоприемник; 7 - электронновычислительное устройство обработки и индикации результатов измерения

Лазерные интерферометры 1. Фирма "ZYGO" выпускает лазерную измерительную систему ZMI-1000, с использованием акусто-оптического модулятора для смещения спектра сигнала. 2. Фирма "Renishaw" выпускает ряд лазерных интерферометров (ML 10, CS 10, PC 10, EC 10). 3. Фирма "Hewlett-Packard" выпускает лазерный интерферометр HP 5528 A, с использованием двухчастотного лазера. Метрологические характеристики: при измерении участков большой протяженности цена деления – 0. 1 мкм, погрешность измерения составляет порядка 0. 2 мкм

Базы для отсчета отклонений от прямолинейности 1. Прилегающая прямая 2. Средняя прямая по МНК 3. Прямая соединяющая первую и последние точки

Построение прилегающей прямой Прилегающая прямая - прямая, соприкасающаяся с реальным профилем и расположенная вне материала детали так, чтобы отклонение от нее наиболее удаленной точки реального профиля в пределах нормируемого участка имело минимальное значение.

Построение профиля поверхности x y 0 0 100 3 200 7 300 8 400 6 500 5 600 4 700 9 800 11 900 12 1000 12 1100 10 1200 10 1300 13

Определение наиболее удаленной точки Если наиболее удаленная точка по оси Х лежит между двумя точками касания, то касательная прямая является прилегающей. Расстояние до наиболее удаленной точки определяется в направлении параллельном оси Y.

Поворот прямой Если наиболее удаленная точка по оси Х не лежит между двумя точками касания, то касательная прямая не является прилегающей. Необходим поворот прямой вокруг точки касания в направлении наиболее удаленной точки.

Поворот прямой Поворот осуществляется до касания прямой профиля или до появления второй наиболее удаленной точки.

Расчетный метод определения прилегающей прямой Строится таблица. X, Y – координаты точек профиля Yпр – координаты точек прилегающей прямой Определяется по формуле: =$G$1*A 4+$G$2 Откл – расстояние от прилегающей прямой до точек профиля Определяется по формуле: =F 4 -C 4 a, b – коэффициенты, определяющие положение прилегающей прямой (начальные значения можно задавать равные 0) Отклонение от прямолинейности определяется, как наибольшее из отклонений =МАКС(G 4: G 17)

Расчетный метод определения прилегающей прямой Определяются коэффициенты a и b прилегающей прямой, такие что наибольшее расстояние до точек профиля должно быть наименьшим. При этом прямая является касательной, поэтому все расстояния должны быть положительными.

Построение средней прямой Средняя прямая – прямая, пересекающая профиль, и расположенная таким образом, что сумма квадратов расстояний от этой прямой до точек профиля является наименьшей.

Расчетный метод определения средней прямой Строится таблица. X, Y – координаты точек профиля Yср – координаты точек средней прямой Определяется по формуле: =$K$1*A 4+$K$2 Откл – расстояние от средней прямой до точек профиля Определяется по формуле: =J 4 -C 4 Откл 2 – квадрат расстояния от средней прямой до точек профиля Определяется по формуле: =K 4^2 a, b – коэффициенты, определяющие положение средней прямой (начальные значения можно задавать равные 0)

Расчетный метод определения средней прямой Сумма квадратов отклонений определяется по формуле: =СУММ(L 4: L 17) Наибольшее отклонение определяется по формуле: =МАКС(K 4: K 17) Наименьшее отклонение определяется по формуле: =МИН(K 4: K 17) Отклонение от прямолинейности определяется по формуле: =K 18 -K 19

Расчетный метод определения средней прямой Определяются коэффициенты a и b средней прямой, такие что сумма квадратов расстояний до точек профиля должно быть наименьшим.

Расчетный метод определения прямой, соединяющей первую и последнюю точки Строится таблица. X, Y – координаты точек профиля Y 1 п – координаты точек прямой, соединяющей первую и последнюю точку Определяется по формуле: =$P$1*A 4+$P$2 Откл – расстояние от прямой, соединяющей первую и последнюю точку, до точек профиля Определяется по формуле: =O 4 -C 4 a, b – коэффициенты, определяющие положение прямой, соединяющей первую и последнюю точку Определяются по формулам: =(C 17 -C 4)/(A 17 -A 4) =C 4 -A 4*(C 17 -C 4)/(A 17 -A 4)

Расчетный метод определения прямой, соединяющей первую и последнюю точки Наибольшее отклонение определяется по формуле: =МАКС(P 4: P 17) Наименьшее отклонение определяется по формуле: =МИН(P 4: P 17) Отклонение от прямолинейности определяется по формуле: =P 18 -P 19

Расчетный метод определения прямой, соединяющей первую и последнюю точки Отклонение от прямолинейности определяется как сумма наибольших расстояний от точек расположенных выше и ниже прямой, соединяющей первую и последнюю точки

Сравнение результатов База для отсчета Отклонение от прямолинейности, мкм Прилегающая прямая 5, 5 Средняя прямая 5, 7 Прямая, соединяющая первую и последнюю точки 7, 0

Для контроля отклонений формы от плоскостности и прямолинейности применяют поверочные линейки, поверочные и разметочные плиты и уровни.

Поверочные линейки бывают лекальные, с широкой рабочей поверхностью и угловые. Лекальные линейки обладают наиболее высокой точностью п имеют различное поперечное сечение с числом рабочих граней от 1 до 4 и длиной 25…500 мм. Линейки с одной гранью служат для определения отклонений от прямолинейности на просвет. Отсутствие световой щели между деталью и линейкой подтверждает прямолинейность образующей, а наличие световой щели указывает на отклонение от прямолинейности (при известном навыке можно оценить на глаз отступления от прямолинейности в 1…2 мкм).

Для проверки отклонения от плоскостности могут применяться лекальные линейки как с одной гранью, так и с тремя или четырьмя гранями. Линейка с одной гранью прикладывается к проверяемой плоскости в разных местах и в разных направлениях. Результат оценивают по размеру световой щели. С помощью трехгранных и четырехгранных линеек плоскость проверяют на краску. Для этой цели рабочие грани линеек покрывают тонким слоем специальной краски (синьки), затем линейкой водят по проверяемой плоскости, в результате чего краска с линейки переходит на проверяемую плоскость. Из-за отдельных неровностей плоскости она покрывается краской не сплошь, а пятнами различной интенсивности. Выступающие части плоскости покрываются краской сильнее, чем впадины. Последующим шабрением или шлифованием выступов добиваются равномерного распределения краски по всей плоскости.

Линейки с широкой рабочей поверхностью применяют для проверки больших плоскостей или плоскостей с большими промежутками или выемками. Эти линейки могут достигать длины 6 м.

Для сохранения прямолинейности линейки должны быть достаточно жесткими, потому и приходится придавать им форму жестких балок п даже рам.

Угловые линейки применяют для проверки плоскостей, расположенных под некоторым углом друг к другу. Длина линеек с трёхгранным или трапецеидальным сечением 250… 1000 мм. Для удобства пользования линейки имеют на торце рукоятки.

Поверочные плиты предназначены для проверки отклонений от плоскостности. Кроме того, их используют в качестве базовых поверхностей для установки на них миниметров, оптиметров, синусных линеек центровых бабок, призм и других измерительных приспособлений. Поверочные плиты изготовляют десяти размеров - от 100×200 до 1000×1500 мм (для специальных целей изготовляют плиты размером 3200×5000 мм). По точности рабочей поверхности плиты подразделяют на четыре класса. Плиты 0, 1 и 2-го классов являются поверочными, а 3-го класса - разметочными. Рабочая поверхность плит, предназначенных для проверки на краску, должна быть пришабрена, а для более точных проверок притерта; поверхность разметочных плит может быть строганой.

Уровни - это измерительные устройства, позволяющие определять положение той или иной плоскости относительно горизонта и измерять небольшие уклоны и углы. Уровень представляет собой запаянную стеклянную трубку - ампулу со шкалой, внутренняя поверхность которой имеет вогнутость с определенным радиусом кривизны. Т рубка заполнена эфиром так, что только небольшой объем паров эфира в виде пузырька занимает наивысшую точку. Слесарный уровень имеет корпус с плоским нижним основанием, в котором помещена ампула.

Для проверки положения вертикальных поверхностей применяют рамный уровень, у которого боковая грань перпендикулярна основанию с вмонтированной в него ампулой. Правильность положения основания уровня в поперечном направлении контролируется второй ампулой меньшей точности. При небольшом наклоне ампулы, а вместе с ней и всего уровня пузырек внутри уровня смещается относительно шкалы. При смещении пузырька на интервал деления, равный 2 мм, угол наклона уровня (цена деления) равен 2″.

Для контроля отклонений от круглости (овальность н огранка) и профиля продольного сечения (конусообразность, бочкообразность, седлообразность и изогнутость) применяют в основном универсальный измерительный инструмент. Так, овальность детали (рис. 49, а) измеряется индикатором на обычной стойке или с помощью скобы; при этом деталь поворачивается на один-два оборота, после чего вычисляется разница между наибольшим и наименьшим показаниями индикатора.

При контроле огранки (рис. 49, б) базой измерения является призма с углом 90°, которая при наиболее часто встречающихся огранках (с тремя и пятью гранями) дает удвоенное значение огранки.

Бочкообразность (рис. 49, в), седлообразность (рис. 49, г) и изогнутость (рис. 49, д) проверяют измерением детали в трех сечениях вдоль оси.

Контроль конусообразности (рис. 49, е) осуществляют обычными средствами, измеряя диаметры в двух сечениях, расположенных на концах детали.

При контроле расположения поверхностей основными видами измерений являются: контроль расстояний между осями отверстия, контроль перпендикулярности осей отверстий и плоскостей, контроль перпендикулярности цилиндрических поверхностей или цилиндрической поверхностей.

В единичном и мелкосерийном производстве основным средством измерений взаимного расположения поверхностей является универсальный измерительный инструмент. В крупносерийном и массовом производстве применяют специальные устройства со шкальными приборами. Основными средствами измерений расстояний между осями отверстий являются калибры-пробки и калибры-скобы. Контроль перпендикулярности осей отверстий и плоскостей производят с помощью угольников, а контроль взаимной перпендикулярности осей двух отверстий или перпендикулярности оси отверстия торцу - специальными калибрами-шаблонами. Контроль соосности отверстий обычно осуществляют жесткими скалками, а при разности диаметров - ступенчатыми скалками. В табл. 8 приведены методы измерений и схемы приспособлений для контроля расположения поверхностей .

Для лекальных, инструментальных и разметочных работ в машиностроении широко применяются поверочные линейки, плиты и лекальные угольники. Они предназначены для контроля отклонений от прямолинейности, плоскостности, перпендикулярности углов наклона.

В соответствии с ГОСТ 8026–92 “Линейки поверочные. Технические условияповерочные стальные линейки выпускаются 6 типов (рис. 10.42): с двухсторонним скосом ЛД, трехгранные ЛТ, четырехгранные ЛЧ, прямоугольного сечения ШП и хромированные ШПХ, двутаврового сечения ШД. Все они подразделяются на лекальные (типы ЛД; ЛТ; ЛЧ) и с широкой рабочей поверхностью (ШП; ШПХ; ШД).

Кроме стальных линеек предусмотрены чугунные линейки с широкой поверхностью: мостики ШМ, угловые трехгранные УТ и твердокаменные (ШП–ТК, ШМ–ТК, УТ–ТК). Длина линеек варьируется от 80 до 4000 мм.

Линейки типов ШМ и УТ изготавливаются в двух исполнениях: с ручной шабровкой и с механически обработанными рабочими поверхностями. Шероховатость рабочих поверхностей составляет R a 0,04…0,63 мкм в зависимости от типа линейки и класса ее точности.

В зависимости от точности изготовления линеек им присваивают соответствующие классы точности: для лекальных линеек - 0 или 1 класса, а для линеек типа ШП; ШД и ШМ – 00; 0; 01; 1 и 2 классы.

Средний полный срок службы стальных линеек должен быть не менее 8 лет, а твердокаменных – не менее 10 лет.

Погрешность контроля поверочными линейками зависит от применяемого метода контроля, опыта оператора, условий контроля и составляет величину 1…5 мкм.

Контроль отклонений от прямолинейности и плоскости поверочными линейками выполняется одним из трех методов: “на просвет”, методом “линейных отклонений” или “на краску”.

При проверке “на просвет” лекальную линейку острым ребром накладывают на контролируемую поверхность (рис 10.43, а ), а источник света помещают сзади линейки и детали (рис.10.43, б ). При отсутствии отклонений от прямолинейности или плоскостности свет не должен пробиваться сквозь щель между линейкой и поверхностью. Линейное отклонение определяют на глаз (рис.10.43, в ) или сравнением с образцами просвета. В качестве образцов просвета могут выступать концевые меры длины (рис.10.43, г ). Минимальная ширина щели, устанавливаемая глазом, составляет 3-5 мкм. Контроль может выполняться как для открытых поверхностей, так и в углах (рис.10.43, д ).



Схема контроля с помощью линеек с широкой рабочей поверхностью и концевых мер длины представлена на рис.10.44. При контроле прямолинейности детали 1 в направлении xx линейку 3 укладывают на две одинаковые концевые меры 2, находящиеся на расстоянии 0,233 длины линейки от ее концов. За измерительную базу принимается нижняя поверхность линейки 3 с широкой рабочей поверхностью. Отклонение от прямолинейности определяется с помощью концевых мер длины, щупов или специального средства измерений с измерительной головкой 4. Описанный метод применим для контроля прямолинейности на длине не более 2000 мм, так как при большей длине линеек их прогиб начинает оказывать существенное влияние на точность контроля.

Контроль отклонений от плоскостности методом “на краску” выполняется линейками типа ШТ, ШД, ШМ и УТ, причем у линеек типов ШМ и УТ рабочие поверхности должны быть шаброваны. При этом способе контроля рабочую поверхность линейки покрывают тонким слоем краски (например, смесью берлинской лазури или сажи с машинным маслом), перемещают по контролируемой поверхности и определяют число (площадь) пятен краски, оставшихся на выступах этой поверхности в квадрате 25х25мм. Погрешность контроля составляет примерно 3… 5 мкм.

Поверочные плиты (рис.10.45) по ГОСТ 10905–86 “Плиты поверочные и разметочные. Технические условия” изготавливаются из чугуна, гранита с вариацией размеров от 250х250мм до 4000х1600мм. Рабочие поверхности чугунных плит должны быть подвергнуты ручной шабровке или механической обработке. Шероховатость рабочих поверхностей механически обработанных чугунных и гранитных плит соответствует Ra1,25…0,32мкм.

Классы точности плит – 000; 00; 0; 1; 2; 3.

Допуск плоскостности устанавливается в зависимости от класса точности и размера плиты и составляет, например, для плиты 250х250 000 класса точности – 1,2мкм, а для плиты 2500х1600 3-го класса точности – 120 мкм.

Плиты изготавливаются из чугуна с физико-механическими свойствами не ниже свойств марки СЧ8 с твердостью 170…229 НВ.

Применение гранитных плит, имеющих большую твердость рабочей поверхности, более высокую износостойкость, меньшую температурную, вибрационную зависимость позволяет повысить точность контроля. Гранитные плиты изготавливаются из диабаза, габбро и различного типа гранитов, имеющих предел прочности на сжатие не менее 264,9 МПа.

Допустимая погрешность контроля отклонений – 3…5 мкм.

По заказу потребителя рабочие поверхности чугунных плит могут быть разделены на квадраты и прямоугольники продольными и поперечными рисками, а гранитных плит – с пазами и резьбовыми отверстиями.

Полный средний срок службы плит – не менее 10 лет.

Проверка отклонений от прямолинейности и плоскостности с помощью плит может выполняться аналогичными методами с учетом того, что аналогичными методами с учетом того, что контролируемая деталь должна быть по размером не больше размеров плиты и имела возможность определять отклонения с помощью набора щупов, концевых мер длины или специального шкального средства при использовании метода линейных отклонений (“от плиты”). Погрешность контроля, как правило, не превышает погрешностей, получаемых при контроле с помощью поверочных линеек.

Loading...Loading...