Конструктивно- силовые схемы шасси. Передняя опора шасси Количество основных опор шасси самолета

Предлагаю авиамоделистам вариант изготовления стойки шасси для ретрактов без станочного оборудования.Стойки подобного типа стоят доволно дорого.На Алиэкспресс подобные находил за 600руб за пару на ПФ еще дороже. Амортизатор для стойки шасси 5 мм, 1 шт.
Товар http://www.сайт/product/6382/

В строительном магазине (Максидом, ОБИ,Касторама и т.п магазинах) приобрел отечественный алюминевый прокат стержень диаметром 6мм и трубку Ф8хФ6 мм метровой длины по цене 75р за каждое изделие.
Так как они идеально сопрягались по диаметрам, решил изготовить из них стойки, остатки проката вполне можно применить для стыковки крыльев, других стоек и т.п.
Единственное затруднение может вызвать только наличие пружин диаметром 5-5,5мм, ну думаю в хозяйстве моделиста всегда подобное найдется.Длину и жёсткость пружины в трубке регулируем подбором длины проставки из стеклотекстолита. Процесс и размеры описывать не буду,каждый длину стоек сделает под конкретную свою модель. В качестве стержней для стыковки с ретрактами можно использовать обломки сверла,вала двигателя или стержни со старых сидиромов. В местах крепления необходимо сделать плоские лыски от проворота и крепеж ставить на клей или краску для предотвращения от самовывинчивания при вибрации.

На самолете Як-18Т установлены главные стойки шасси одностоечного типа ферменно-балочной конструкции с боковым и задним подкосами и с непосредственным креплением колеса к штоку амортизатора. Главные стойки шасси (рис. 45, 46) установлены в центроплане и состоят из следующих элементов.

Стойка 1 - основной силовой элемент главной ноги, передающий нагрузки от колеса к самолету. Она испытывает нагрузки от сил и моментов по всем трем осям. Как и в конструкции передней ноги шасси, стойка главной ноги представляет собой одно целое с амортизатором.

Складывающийся подкос 2 (боковой) воспринимает усилия, действующие на стойку от боковой силы, приложенной к колесу, и увеличивает жесткость конструкции стойки в боковом направлении. Состоит из верхнего и нижнего звеньев. Жесткий подкос (см. рис. 45) 4 (задний) воспринимает силы, действующие на стойку в плоскости колеса, и увеличивает жесткость конструкции стойки в продольном направлении.

Цилиндр-подъемник 6 и замок убранного положения 8 выполняют те же функции, что и аналогичные элементы конструкции передней ноги шасси.

Ось 5 и шкворень 7 служат для крепления и фиксации амортизационной стойки главной ноги шасси в кронштейнах, находящихся соответственно на заднем лонжероне и диафрагме центроплана; изготовлены из поковки материала 30ХГСА.

Щиток 9 служит для частичного закрытия ниши при убранном положении главной ноги. Колесо 10 - опора главной ноги шасси, тормозное. Для сигнализации положения главной ноги на ней смонтирован механический указатель 3.

Главные ноги шасси в убранном положении удерживаются механическими замками, в выпущенном - шариковыми замками цилиндров - подъемников и боковыми складывающимися подкосами.

Амортизационная стойка главной ноги шасси (рис. 47) состоит из стального стакана (из материала 30ХГСА), стального штока с полуосью для крепления колеса, шлиц-шарнира, фиксирующего шток от поворота вокруг вертикальной оси, и деталей амортизации. В верхней части стакан 4 имеет проушины для оси 14 и шкворня 2, с помощью которых главная стойка крепится к центроплану, а также кронштейн 1 для крепления к стойке ушкового болта штока цилиндра-подъемника.

В средней части стакана, представляющей собой толстостенную стальную трубу, расположены верхний зарядный штуцер 3, узлы крепления тяг щитка и проушины крепления жесткого и складывающегося подкосов. В нижней своей части стакан имеет проушину для крепления верхнего звена шлиц-шарнира и узла подвески стойки на замок убранного положения.

Узел подвески представляет собой проушину с вставленным в ее отверстия болтом 12 с внутренней распорной и внешней 11 стальными втулками и двумя шайбами 10. Шайбы и лапы проушин имеют рифленую поверхность для регулировки положения болта с втулкой. На болт наворачивается гайка, контрящаяся шплинтом.

Внутри стакана в нижней его части с помощью гайки 26, законтренной винтом, установлена неподвижная букса 23 с уплотнениями, а с помощью стопорного кольца 28 в гайку установлен обтюратор 27 с сальником 25.

Шток амортизационной стойки полый и выполнен из материала 30ХГСА. К нижнему концу штока приварен узел с полуосью для крепления колеса с нижним зарядным штуцером и проушиной крепления нижнего звена шлиц-шарнира. В верхней части с помощью гайки 20, законтренной шплинтом 21, закреплен пакет деталей амортизации, движущийся вместе со штоком и состоящий из подвижной буксы 16, разрезного кольца 17, клапана 18, выполненного в виде стального кольца с тремя отверстиями Æ 1,4 мм для протекания жидкости, втулок 22 и 15. Подвижная букса 16 и втулка 22 выполнены из материала БРАЖМЦ.

С помощью гайки 20 на штоке установлен поршень 24, который имеет возможность перемещаться внутри штока (ход 120±3 мм) и делит полость амортизационной стойки на две изолированные друг от друга камеры Д и Г.

Через нижний штуцер камера Г заряжается азотом до давления 65 ±1 кгс/см2, через гнездо верхнего штуцера камера Д заполняется маслом АМГ - 10, а через штуцер заряжается азотом до 24 ±1 кгс/см2. По конструкции штуцеры подобны штуцерам передней амортизационной стойки. Герметичность главной амортизационной стойки обеспечивается применением уплотнений, состоящих из фторопластовых шайб и резиновых колец, расположенных в кольцевых выточках на внутренней и внешней поверхности неподвижной буксы и внешней поверхности поршня. Работа амортизационной стойки главной ноги шасси аналогична работе передней амортизационной стойки.

Диаграмма обжатия главной амортстойки показана на рис. 48.

Работа амортизации на прямом ходе представлена на диаграмме в виде кривой abc. Как и на диаграмме (см. рис. 39) обжатия передней стойки, кривая abc отчетливо распадается на два участка: ab - показывает работу амортизации при нормальной посадке (работа верхней камеры Д амортизационной стоики); bc - работу нижней камеры Г. Последняя вступает в работу при поглощении энергии грубой посадки или преодолении самолетом высокого препятствия при движении по аэродрому. Доля работы, затрачиваемой на преодоление гидравлических сопротивлении жидкости, в общем объеме работы, поглощенной амортизатором, при прямом ходе несколько выше, чем при обжатии передней стоики, что видно на участке bc диаграммы, характеризующей работу нижней камеры амортизационной стойки. Амортизация на обратном ходе осуществляется в основном торможением жидкости в клапане 18, который прижимается к буксе 16, и жидкость вытесняется из полости между стаканом 4 и втулкой 15 только через отверстия в клапане и буксе.

Кривая усилий ned при движении штока вниз, изображенная на диаграмме обжатия главной стойки, состоит из двух участков, характеризующих работу верхней и нижней камер амортизатора.

Складывающийся и жесткий подкосы. Складывающийся подкос 2 (см рис. 45) служит для фиксации главной ноги шасси в выпущенном положении, передает усилия с амортизационной стоики на узел центроплана и совместно с цилиндром-подъемником входит в механизм уборки и выпуска главной ноги шасси.

Подкос состоит из верхнего и нижнего штампованных из материала 30ХГСА звеньев, соединенных между собой болтом с гайкой.

Нижнее звено подкоса соединено с амортизационной стойкой, верхнее - с кронштейном на стенке ниши шасси. Под соединительный болт в нижнем звене подкоса установлен шаровой вкладыш. Гайки соединительных болтов верхнего и нижнего звеньев контрятся шплинтами.

Верхнее звено подкоса шарнирно соединено с кронштейном на стенке ниши шасси и с цилиндром-подъемником. Соединение с цилиндром - подъемником осуществляется с помощью специального ушкового болта, вращающегося в бронзовых втулках, впрессованных в бобышку верхнего звена подкоса. С помощью болта и гайки, законтренной шплинтом, ушковый болт подкоса соединен с ушковым болтом, ввернутым в шток цилиндра - подъемника.

В кронштейне верхнего звена подкоса установлен концевой выключатель АМ800К, а в кронштейн нижнего звена ввернут нажимной регулируемый винт. При уборке шасси подкос складывается, нажимной винт освобождает от нажатия шток концевого выключателя и на табло сигнализации шасси в кабине гаснет зеленая сигнальная лампа выпущенного положения главной ноги шасси.

В выпущенном положении главной ноги звенья складывающегося подкоса устанавливаются в распор и фиксируются в этом положении цилиндром-подъемником, шток которого запирается шариковым замком, что препятствует складыванию подкоса от внешних боковых усилий, действующих на ногу шасси. Нажимной винт нижнего звена подкоса нажимает на шток концевого выключателя, и на сигнальном табло шасси горит зеленая сигнальная лампа выпущенного положения главной ноги. Обратная стрелка прогиба подкоса вниз от прямой – 5 ± 0, 2 мм.

Жесткий подкос 4 (см. рис. 45), соединяющий ось со стойкой, представляет собой толстостенную стальную трубку диаметром 25X2, в которую вварены вилка и ухо. С помощью вилки подкос крепится к оси, с помощью уха - к стойке. Крепление подкоса осуществляется болтовыми соединениями. Гайки болтов контрятся шплинтами.

Цилиндр-подъемник уборки-выпуска главной стойки шасси по конструкции аналогичен цилиндру - подъемнику передней стойки. Ухо цилиндра-подъемника крепится к ушковому болту, установленному на верхнем звене подкоса, а шток - ввернутым в него ушковым болтом к кронштейну (см. рис 45), установленному на болтах крепления шкворня к стакану амортизационной стойки. Отличие в работе цилиндра - подъемника главной ноги от цилиндра-подъемника передней ноги при выпуске шасси состоит в том, что фиксация главной ноги в выпущенном положении и закрытие шарикового замка обеспечиваются при штоке, втянутом в корпус цилиндра.

Щиток главной стойки шасси. Щиток 9 (см. рис. 45) служит для частичного закрытия ниши шасси при убранном положении главной ноги. Он состоит из обшивки и приваренной к ней штампованной из материала Д16 жесткости. Крепление штока к нижней обшивке центроплана осуществлено с помощью шомпольной петли, а к амортизационной стойке - с помощью двух регулируемых по длине стальных тяг. Тяги соединяют кронштейны на щитке с узлами, приваренными к стакану амортизационной стойки. Гайки болтов, соединяющих тяги с кронштейнами на щитке и болты соединения тяг со стаканом амортизационной стойки, контрятся шплинтами.

Замок убранного положения главной стойки шасси 8 (см. рис. 45) крепится четырьмя болтами с анкерными гайками к стенке ниши главной ноги шасси. По конструкции элементов и принципу работы замок аналогичен замку убранного положения передней ноги шасси. При открытом замке на сигнальном табло шасси в кабине красная сигнальная лампа убранного положения главных ног шасси гаснет.

Колесо. На каждой амортизационной стойке главных ног шасси установлено по тормозному колесу К141/Т141.

Тормозное колесо (рис. 49) состоит из колеса и камерного тормоза. При установке на самолет тормозное колесо собирается совместно с пневматикой размером 500x150 мм. Колесо состоит из барабана 3, несущего специальные узлы конструкции, и представляет собой отливку из магниевого сплава МЛ4 или МЛ5. Во внутренней полости барабана размещена тормозная рубашка 10, в которой размещен камерный тормоз.

Реборда 2 выполнена съемной для облегчения монтажа пневматика 1 на колесо. В собранном колесе реборда удерживается в осевом направлении двумя контрящими полукольцами 9, а от проворачивания - втулками, установленными в пазы реборды и барабана.

Вращение колеса осуществляется на конических радиально - упорных роликоподшипниках 5. Их наружные кольца запрессованы в гнездо ступицы барабана. Внутренние обоймы с роликами монтируются на полуоси 14 штока амортизационной стойки и затягиваются гайкой 6. С внешних сторон подшипники защищены от засорения и вытекания смазки колпачком и войлочным кольцом обтюратора. От попадания грязи во внутренние полости колесо закрыто щитком 7.

Камерный тормоз, размещенный в тормозной рубашке 10, состоит из корпуса тормоза 12, двенадцати колодок 15, тормозной камеры 17, штуцера 18 с фланцем, возвратных пружин 16, обтекателя 11, а также деталей крепления. Корпус 12 отлит из магниевого сплава МЛ4 или МЛ5. Шестью болтами 13 корпус (а с ним и весь тормоз) крепится к фланцу полуоси штока амортизационной стойки. Колодки 15 армированные - фрикционная пластмасса спрессована совместно с металлическим каркасом. Наружная поверхность колодок образует с поверхностью рубашки 10 фрикционную пару. Колодки имеют возможность перемещаться только в радиальном направлении под давлением сжатого воздуха, подведенного в тормозную камеру 17 через штуцер и угольник 19.

Возвратные пружины 16 типа ленточных рессор проходят через торцевые пазы в колодках и отводят колодки от рубашки после сброса давления из тормозной камеры.

В обтекателе 11 имеются четыре отверстия, закрытые специальными крышками и служащие для контроля за износом колодок в эксплуатации.

При нажатии на тормозные рычаги, установленные на штурвалах управления, воздух поступает в тормозную магистраль и дифференциалом ПУ-8 (У138) в зависимости от положения педалей распределяется в тормозную камеру левого или правого колеса. Давление сжатого воздуха, подведенного в тормозную камеру, создает распорное усилие, перемещающее колодки в радиальном направлении. Колодки, перемещаясь, преодолевают усилие возвратных пружин 16 и прижимаются к тормозной рубашке 10, предварительно выбрав зазор между колодками и рубашкой. При их соприкосновении возникают силы трения, создающие тормозной момент. При сбросе давления из тормозной камеры возвратные пружины отжимают колодки от рубашки в исходное положение. Между колодками тормоза и рубашкой колеса устанавливается зазор, обеспечивающий свободное вращение колеса на полуоси.

Механический указатель положения главной стойки шасси (см, рис. 45) состоит из трех основных элементов: серьги, вилки и самого указателя 3. Штампованная из материала АК-6 серьга смонтирована на болте крепления жесткого подкоса 4 к оси 5 навески амортизационной стойки. С помощью болта с гайкой, законтренной шплинтом, серьга соединена со стальной вилкой, которая вворачивается непосредственно в указатель.

При выпущенном положении шасси указатель выходит за обводы центроплана на расстоянии 70 мм перед задним лонжероном. Отверстие в обшивке центроплана для выхода указателя окантовано фторопластовым пистоном. При уборке шасси ось 5 вращается в кронштейне крепления главной ноги, а вместе с ней изменяет свое положение и серьга. При этом указатель втягивается внутрь центроплана, и пилот получает информацию о нахождении стоек в убранном положении.

Изобретение относится к авиации, в частности к взлетно-посадочным устройствам, и предназначено для управления движением самолета на взлете, посадке и рулении по аэродрому. Целью изобретения является повышение безопасности управления передней опорой шасси самолета. Система управления содержит штурвалы 1 с установленными на них переключателями 21, установленные по правому и левому бортам кабины рукоятки управления 6, колонки которых кинематически соединены между собой и с центрирующим цилиндром 12, педали 2, связанные между собой через проводку 3 и с входными валами датчиков 4 малых углов поворота стойки шасси, задающие датчики 15 больших углов поворота стойки шасси, выход каждого из которых соединен с входом соответствующего блока управления 5. Каждый блок управления 5 связан с соответствующим электрогидравлическим агрегатом управления 22, соединенным с силовым цилиндром 23 механизма поворота 24 колес стойки шасси, связанного с датчиками 25 обратной связи, при этом выходы этих датчиков соединены с соответствующими блоками управления 5. Система снабжена механизмом 18 переключения режимов, кинематически связанным с колонкой одной из рукояток управления, например с колонкой 8 рукоятки 6, и имеющим магнитоуправляемые выключатели, соединенные через две параллельные цепи с переключателем, установленным на штурвале, и механизмом подключения задающих датчиков 15 больших углов поворота стойки шасси, кинематически связанным с колонкой 9 рукоятки 7 и с дополнительным центрирующим цилиндром 17. 5 ил.

Изобретение относится к авиации, а более конкретно к взлетно-посадочным устройствам, и предназначено для управления движением самолета на взлете, посадке и рулении по аэродрому. Известна система управления передней опорой шасси самолета, содержащая штурвалы управления с переключателями, установленные по левому и правому бортам кабины рукоятки управления. Колонки каждой рукоятки кинематически связанные между собой и с центрирующим цилиндром, а также с входными валами соответствующих задающих датчиков больших углов поворота стойки шасси. Система содержит также педали левого и правого пилотов, кинематически связаны между собой и с входными валами задающих датчиков малых углов поворота стойки шасси. При этом выход каждого датчика соединен с соответствующими входами блоков управления. Кроме того, система содержит также датчики обратной связи, входные валы которых кинематически связаны с механизмом поворота колес, а выходные с упомянутым блоком управления. Кроме того, на каждом штурвале установлено по одному трехпозиционному переключателю режимов работы системы, каждый из которых связан с соответствующим ему упомянутым блоком управления, а блоки управления электрически соединены с соответствующим электрогидравлическими агрегатами управления, соединенными с соответствующими силовыми цилиндрами исполнительного механизма поворота колес. Эта система обеспечивает управление самолетом как в режиме руления по аэродрому, так и на режиме взлета и посадки, т.е. обеспечивает управление поворотом стойки шасси на большие и малые углы. Использование трехпозиционного выключателя для переключения режимов работы системы через блок управления на режим "Взлет-посадка", выключенный режим и режим "Руление" заставляет летчика внимательно следить за тем, в какую именно позицию необходимо установить выключатель, особенно на взлетно-посадочных режимах. Это отвлекает летчика, в результате чего снижается безопасность управления передней опорой шасси самолета. Технической задачей изобретения является повышение безопасности управления передней опорой шасси самолета. Это достигается тем, что система управления передней опорой шасси самолета, содержащая штурвалы управления, на которых установлены переключатели, установленные по правому и левому бортам кабины рукоятки управления, колонки которых кинематически соединены между собой и с центрирующим цилиндром, педали управления, также кинематически связанные между собой и с входными валами датчиков малых углов поворота стойки шасси, задающие датчики больших углов поворота стойки шасси, причем выход каждого датчика больших углов поворота соединен с входом соответствующего блока управления, каждый из которых связан с соответствующим электрогидравлическим агрегатом управления, соединенным с силовым цилиндром исполнительного механизма поворота колес, датчики обратной связи, входные валы которых кинематически связаны с механизмом поворота колес, а выходы с блоками управления, она снабжена механизмом переключения режимов, кинематически связанным с колонкой одной из рукояток управления и имеющим магнитоуправляемые выключатели, соединенные через две параллельные цепи включения с переключателем, установленным на штурвале, и механизмом подключения задающих датчиков больших углов поворота стойки шасси, кинематически связанным с колонкой другой рукоятки управления и с дополнительным центрирующим цилиндром. В результате этого летчик пользуется переключателем, установленным на штурвале, только для включения системы, одновременно, при этом включается режим "Взлет-посадка", а для перехода на режим "Руление" он привычно пользуется одной из рукояток, при повороте которых кинематическая связь колонки управления левой рукоятки с механизмом переключения режимов вызывает срабатывание выключателей, соединенных с блоком управления, и система автоматически переключается на этот режим. Таким образом, летчик отвлекается только один раз для включения системы, далее его внимание уже не отвлекается на переключение режимов, что и позволяет повысить безопасность управления передней опорой шасси самолета. На фиг.1 показана функциональная схема предложенной системы управления; на фиг.2 электрическая схема механизма переключения режимов; на фиг.3 - общий вид механизма переключения режимов; на фиг.4 вид А фиг.3; на фиг.5 - механизм подключения задающих датчиков больших углов поворота. Система управления передней опорой шасси самолета содержит штурвалы 1 и педали 2 левого и правого пилотов. Педали 2 через проводку 3 соединены между собой и с входными валами задающих датчиков 4 малых углов поворота стойки шасси, выходы которых соединены с блоками управления 5. Система содержит также рукоятки 6 и 7, колонки 8 и 9 которых через проводку 10 соединены между собой и через качалку 11 с пружинным цилиндром 12. Кроме того, колонка 9 правой рукоятки 7 через зубчатый сектор 13 и рейки 14 соединена с входными валами задающих датчиков 15 больших углов поворота стойки шасси, выходы которых соединены с блоками управления 5, при этом зубчатый сектор 13 через проушина 16 соединен с дополнительным пружинным цилиндром 17, а колонка 8 левой рукоятки 6 соединена с механизмом 18 переключения режимов, имеющим магнитоуправляемые выключатели 19, которые через две параллельные цепи 20 соединены с переключателями 21, установленными на штурвалах 1. Кроме того, выключатели 19 соединены с входом блока управления 5. Каждый из блоков управления 5 соединен с соответствующим электрогидравлическим агрегатом управления 22, а они, в свою очередь, с соответствующими силовыми цилиндрами 23 механизма поворота колес стойки шасси 24, снабженного датчиками 25 обратной связи, выходы которых соединены с соответствующими входами блока управления 5. При этом в механизме 18 переключения режимов на кронштейне 26 установлены магнитоуправляемые выключатели 19 и двуплечие качалки 27. На одном плече каждой качалки с возможностью регулировки установлены шторки 28, а на другой по одному ролику 29 для взаимодействия с соответствующим кулачком 30, неподвижно установленным на колонке 8 левой рукоятки. Качалки 27 соединены между собой пружиной 31, прижимающей ролики к рабочей поверхности кулачка 30. Система работает следующим образом. При взлете и посадке летчик устанавливает переключатель 21 во включенное положение. При этом питание через нормально замкнутые контакты магнитоуправляемых выключателей 19 поступает на блоки управления 5 в канал взлета-посадки. При перемещении летчиком педалей 2 поворачиваются валы задающих датчиков 4 малых углов поворота стойки шасси, с выхода которых поступает сигнал в блок управления 5. Одновременно в блок управления 5 поступают сигналы с датчиков 25 обратной связи, в результате чего в блоке управления 5 возникает сигнал рассогласования, который поступает в электрогидравлические агрегаты управления 22 и, в зависимости от величины этого сигнала происходит соответствующая подача рабочей жидкости в ту или другую полости цилиндров 23, а в результате этого происходит поворот стойки шасси 24 на заданный угол, т.е. до тех пор, пока величины сигналов, поступающих в блок управления 5 с датчиков 4 и с датчиков 24, не сравняются. Для управления самолетом на малых скоростях /посадка, руление/ поворачивают одну из рукояток 6 или 7, при этом колонки 8 и 9 поворачиваются. Вместе с колонкой 8 поворачивается установленный на ней кулачок 30, который входит в соприкосновение с соответствующим роликом 29, в результате чего качалки 27 поворачиваются, шторки 28 расходятся и через нормально разомкнутые контакты магнитоуправляемых выключателей 19 питание поступает в блок управления 5 в канал "руление". Одновременно поворачивается колонка 9 с упором 32 до совмещения с прорезью зубчатого сектора 13. Дальнейший поворот колонки 9 вызывает поворот зубчатого сектора 13 и перемещение реек 14, которые поворачивают валы задающих датчиков 15. Сигналы с датчиков 15 поступают в блоки управления 5. Одновременно в блоки управления 5 поступают сигналы с датчиков 25 обратной связи, в результате чего в блоке управления 5 возникает сигнал рассогласования, который поступает в электрогидравлические агрегаты управления 22 и, в зависимости от величины этого сигнала происходит соответствующая подача рабочей жидкости в ту или другую полости цилиндров 23, а в результате этого происходит поворот стойки шасси 24 на заданный угол. Одновременно с поворотом зубчатого сектора 13 включается в работу соединенный с ним пружинный цилиндр 17, который возвращает валы датчиков 15 в нейтральное положение при возвращении рукояток 6 и 7 в нейтральное положение, которое при отпускании возвращаются в это положение с помощью пружинного цилиндра 12. Подключение в работу датчиков 15 больших углов поворота происходит только после переключения режимов работы системы магнитоуправляемыми выключателями 19 с режима "Взлет-посадка" на режим "Руление" в механизма переключения 18. Это обеспечивается наличием зазора е между упором 32 на колонке 9 и стенками паза, выполненного на зубчатом секторе 13. Таким образом, так как переключатель 21 имеет только две рабочие позиции "Включено" "Выключено", летчик включает его при посадке и больше уже не обращает на него внимание, так как переключение на режим "Руление" осуществляется привычным способом с помощью рукояток 6 или 7. Использование предложенной системы позволит повысить безопасность управления передней опорой самолета как на взлетно посадочных режимах, так и на режимах руления.

ФОРМУЛА ИЗОБРЕТЕНИЯ

Система управления передней опорой шасси самолета, содержащая штурвалы управления с установленными на них переключателями, установленные по правому и левому бортам кабины рукоятки управления, колонки которых кинематически соединены между собой и с центрирующим цилиндром, педали управления, также кинематически связанные между собой и с входными валами датчиков малых углов поворота стойки шасси, задающие датчики больших углов поворота стойки шасси, причем выход каждого датчика больших углов поворота соединен с входом соответствующего блока управления, каждый из которых связан с соответствующим электрогидравлическим агрегатом управления, соединенным с силовым цилиндром исполнительного механизма поворота колес, датчики обратной связи, входные валы которых кинематически связаны с механизмом поворота колес, а выходы с блоками управления, отличающаяся тем, что она снабжена механизмом переключения режимов, кинематически связанным с колонкой одной из рукояток управления и имеющим магнитно-управляемые выключатели, соединенные через две параллельные цепи включения с переключателем, установленным на штурвале, и механизмом подключения задающих датчиков больших углов поворота стойки шасси, кинематически связанным с колонкой другой рукоятки управления и с дополнительным центрирующим цилиндром.

Вертикальный силовой элемент ферменной конструкции фюзеляжа, также может служить для подкрепления и придания жёсткости крыльям и оперению . Кроме того, стойка шасси является основным силовым элементом шасси летательного аппарата , воспринимающим и передающим на конструкцию планёра концентрированные статические и динамические нагрузки, возникающие при взлёте и особенно при посадке летательного аппарата.

Стойка в ферме

В ферменных фюзеляжах все нагрузки воспринимает пространственная ферма , составленная из трёх или четырёх плоских ферм. Основными силовыми элементами такой конструкции, помимо стойки, являются раскосы (подкосы), расчалки и лонжероны . Стойка в ферменной конструкции фюзеляжа работает на растяжение и сжатие . В настоящее время ферменные фюзеляжи почти не используют, им на смену пришли балочные фюзеляжи , где есть работающая обшивка , которая воспринимает вместе с каркасом из лонжеронов, стрингеров и шпангоутов изгибающие и крутящие моменты .

Стойка шасси

Стойка является основным силовым элементом шасси самолёта , воспринимающим и передающим на конструкцию планёра концентрированные статические и динамические нагрузки, возникающие при взлёте и посадке. Основные элементы стойки шасси:

  • амортизатор шасси - для обеспечения максимальной плавности хода при движении по аэродрому, а также гашения ударов, возникающих в момент приземления (часто используются многокамерные азото-масляные длинноходные амортизаторы), могут быть установлены также дополнительные стабилизирующие демпферы ;
  • складывающийся подкос, воспринимающий нагрузку от лобовых сил;
  • раскосы - стержни, расположенные по диагонали шарнирного многоугольника, образованного стойкой и подкосом, и обеспечивающие геометрическую неизменяемость этого многоугольника;
  • траверса - элемент крепления стойки к крылу или фюзеляжу;
  • механизм ориентации стойки шасси - для разворота стойки при её убирании или выпуске;
  • узел у нижнего основания стойки - для крепления оси колёс к стойке;
  • замки, обеспечивающие фиксацию стойки в выпущенном и убранном положениях;
  • цилиндры механизма выпуска и убирания шасси.

В начальный период развития авиации стоки шасси при полёте самолёта были неубирающимися. Это было одним из основных источников аэродинамического сопротивления. Для его снижения сначала стали устанавливать обтекатели на колёса и стойки, а затем при появлении скоростных самолётов началось широкое применение убирающегося шасси, хотя это увеличивало массу и усложняло конструкцию шасси.

Стойки шасси на самолёте не только связывают через колёса (или
лыжи) летательный аппарат с поверхностью земли, но и выполняют
очень важную задачу – гасить удары и колебания при посадке,
взлёте и рулении на земле. Поэтому стойки шасси представляют
собой довольно сложную конструкцию, с подвижными деталями и
упругими элементами. Последними являются гидравлические или
пневмогидравлические амортизаторы и имеют очень заметную деталь
– шток. По требованиям герметичности шток отполирован и блестит,
как… зеркало. Достаточно посмотреть на экскаватор, там масса
гидроцилиндров с блестящими штоками, какой бы грязной и «убитой»
ни была сама машина.

Если на прототипе шток амортизатора не был закрыт гофрированным
чехлом (как, например, на МиГ-3), он очень заметен и, если
аккуратно имитирован, то этим здорово добавляет модели реализма
и зрелищности.

Когда речь идёт о покраске, то существует много хороших
красок-металликов, например, «металлическая» серия фирмы Testors,
краска «серебро» серии Супер фирмы Звезда. А если по вине
производителя деталь, имитирующая шток имеет не «совсем круглую»
форму в сечении? Тогда придется делать доработку. Или переделку,
если лечение «малой кровью» не даёт результата.

Нам понадобятся свёрла (вернее, набор свёрл различных диаметров),
не очень острая игла и очень острый нож, желательно, тисочки и
металлическая трубка подходящего диаметра, например, игла
медицинского шприца. Наборы прекрасных трубок выпускает фирма
Model Point, там диаметры есть на все случаи модельной жизни.

Отделяем стойку от литника.

Ножом удаляем
след стыка половинок пресс-формы и возможный облой.

Сначала либо
разрезаем, либо вовсе удаляем шарнир, т.н. двузвенник.

Если он даётся
отдельной деталью, просто пока его не приклеиваем. Отрезаем шток
не под самый «корень», т.е. не до того места, где начинается
корпус стойки, а оставляем ~0,5 мм бывшего штока с каждой
стороны.



Аккуратно,
чтобы не деформировать, зажимаем стойку в тиски и иглой отмечаем
центр будущего отверстия под шток. Говоря по слесарному,
накерниваем.

Теперь
начинается самый интересный, но и самый ответственный этап –
сверление. Начинаем сверлом, с диаметром вдвое меньшим нужного,
то есть, делаем центровочное отверстие.

Сверлить надо
не торопясь, постоянно контролируя процесс, чтобы сверло не «уходило»
в сторону, не перекашивалось. Пройдя около 2-3 мм, можно
остановиться и начать «бурить» сверлом уже требуемого диаметра,
т.е. равного диаметру штока. При этом без следа удалится тот, не
отрезанный, кусочек бывшего штока.

Просверлив отверстия в обеих частях корпуса
стойки, берём трубку и отрезаем кусочек длиной, чуть большей
длины бывшего штока на 3-5 мм, в зависимости от просверленных
отверстии в корпусе стойки. Набор деталей готов!

Остаётся,
предварительно окрасив детали, собрать всё в единую конструкцию.

Новый шток идеально круглый в сечении,
абсолютно не нуждается в покраске и радует глаз честным,
настоящим металлическим блеском.

Loading...Loading...