Установка ионно плазменного азотирования. Ионное азотирование. Как протекает процесс азотирования

В нашей компании по выгодной цене вы можете заказать ионно-плазменное азотирование в Нижнем Новгороде. Это одна из разновидностей химической термообработки. Данная технология применяется обычно для обработки изделий и деталей из чугуна, стали и других металлов и сплавов. Применение ионно-плазменного азотирования актуально в том случае, если требуется:

    повысить прочность металла;

    повысить износостойкость изделия;

    минимизировать вероятность прилипания металлов к поверхности формы в процессе литья;

    повысить антизадирные свойств и т. д.

Применяемые нами установки были разработаны специалистами нашей фирмы, поэтому мы досконально знаем, как именно проводится обработка подобного типа. Мы являемся настоящими профессионалами в этой сфере деятельности.

Преимущества сотрудничества с нами

Наша компания более 17 лет работает в сфере производства установок вакуумного напыления покрытий и оказания соответствующих услуг. Поэтому своим клиентам мы можем предложить следующие условия:

    Профессиональная консультационная помощь по любым вопросам и на любом этапе сотрудничества с нами.

    Все работы выполняются нашими квалифицированными специалистами с соблюдением всех международных норм и правил.

    Наши постоянные клиенты и партнеры – крупные предприятия автомобильной, космической, авиационной, химической сфер промышленности.

    Многолетнее сотрудничество с ведущими российскими и зарубежными научно-исследовательскими институтами и предприятиями позволяет нам постоянно повышать качество оказываемых услуг.

Privacy Policy

Effective date: October 22, 2018

Ionitech Ltd. ("us", "we", or "our") operates the https://www..

This page informs you of our policies regarding the collection, use, and disclosure of personal data when you use our Service and the choices you have associated with that data.

We use your data to provide and improve the Service. By using the Service, you agree to the collection and use of information in accordance with this policy. Unless otherwise defined in this Privacy Policy, terms used in this Privacy Policy have the same meanings as in our Terms and Conditions, accessible from https://www.сайт/

Information Collection And Use

We collect several different types of information for various purposes to provide and improve our Service to you.

Types of Data Collected

Personal Data

While using our Service, we may ask you to provide us with certain personally identifiable information that can be used to contact or identify you ("Personal Data"). Personally identifiable information may include, but is not limited to:

  • Cookies and Usage Data

Usage Data

We may also collect information how the Service is accessed and used ("Usage Data"). This Usage Data may include information such as your computer"s Internet Protocol address (e.g. IP address), browser type, browser version, the pages of our Service that you visit, the time and date of your visit, the time spent on those pages, unique device identifiers and other diagnostic data.

Tracking & Cookies Data

We use cookies and similar tracking technologies to track the activity on our Service and hold certain information.

Cookies are files with small amount of data which may include an anonymous unique identifier. Cookies are sent to your browser from a website and stored on your device. Tracking technologies also used are beacons, tags, and scripts to collect and track information and to improve and analyze our Service.

You can instruct your browser to refuse all cookies or to indicate when a cookie is being sent. However, if you do not accept cookies, you may not be able to use some portions of our Service.

Examples of Cookies we use:

  • Session Cookies. We use Session Cookies to operate our Service.
  • Preference Cookies. We use Preference Cookies to remember your preferences and various settings.
  • Security Cookies. We use Security Cookies for security purposes.

Use of Data

Ionitech Ltd. uses the collected data for various purposes:

  • To provide and maintain the Service
  • To notify you about changes to our Service
  • To allow you to participate in interactive features of our Service when you choose to do so
  • To provide customer care and support
  • To provide analysis or valuable information so that we can improve the Service
  • To monitor the usage of the Service
  • To detect, prevent and address technical issues

Transfer Of Data

Your information, including Personal Data, may be transferred to - and maintained on - computers located outside of your state, province, country or other governmental jurisdiction where the data protection laws may differ than those from your jurisdiction.

If you are located outside Bulgaria and choose to provide information to us, please note that we transfer the data, including Personal Data, to Bulgaria and process it there.

Your consent to this Privacy Policy followed by your submission of such information represents your agreement to that transfer.

Ionitech Ltd. will take all steps reasonably necessary to ensure that your data is treated securely and in accordance with this Privacy Policy and no transfer of your Personal Data will take place to an organization or a country unless there are adequate controls in place including the security of your data and other personal information.

Disclosure Of Data

Legal Requirements

Ionitech Ltd. may disclose your Personal Data in the good faith belief that such action is necessary to:

  • To comply with a legal obligation
  • To protect and defend the rights or property of Ionitech Ltd.
  • To prevent or investigate possible wrongdoing in connection with the Service
  • To protect the personal safety of users of the Service or the public
  • To protect against legal liability

Security Of Data

The security of your data is important to us, but remember that no method of transmission over the Internet, or method of electronic storage is 100% secure. While we strive to use commercially acceptable means to protect your Personal Data, we cannot guarantee its absolute security.

Service Providers

We may employ third party companies and individuals to facilitate our Service ("Service Providers"), to provide the Service on our behalf, to perform Service-related services or to assist us in analyzing how our Service is used.

These third parties have access to your Personal Data only to perform these tasks on our behalf and are obligated not to disclose or use it for any other purpose.

Analytics

We may use third-party Service Providers to monitor and analyze the use of our Service.

    Google Analytics

    Google Analytics is a web analytics service offered by Google that tracks and reports website traffic. Google uses the data collected to track and monitor the use of our Service. This data is shared with other Google services. Google may use the collected data to contextualize and personalize the ads of its own advertising network.

    You can opt-out of having made your activity on the Service available to Google Analytics by installing the Google Analytics opt-out browser add-on. The add-on prevents the Google Analytics JavaScript (ga.js, analytics.js, and dc.js) from sharing information with Google Analytics about visits activity.

    For more information on the privacy practices of Google, please visit the Google Privacy & Terms web page: https://policies.google.com/privacy?hl=en

Links To Other Sites

Our Service may contain links to other sites that are not operated by us. If you click on a third party link, you will be directed to that third party"s site. We strongly advise you to review the Privacy Policy of every site you visit.

We have no control over and assume no responsibility for the content, privacy policies or practices of any third party sites or services.

Children"s Privacy

Our Service does not address anyone under the age of 18 ("Children").

We do not knowingly collect personally identifiable information from anyone under the age of 18. If you are a parent or guardian and you are aware that your Children has provided us with Personal Data, please contact us. If we become aware that we have collected Personal Data from children without verification of parental consent, we take steps to remove that information from our servers.

Changes To This Privacy Policy

We may update our Privacy Policy from time to time. We will notify you of any changes by posting the new Privacy Policy on this page.

We will let you know via email and/or a prominent notice on our Service, prior to the change becoming effective and update the "effective date" at the top of this Privacy Policy.

You are advised to review this Privacy Policy periodically for any changes. Changes to this Privacy Policy are effective when they are posted on this page.

Contact Us

If you have any questions about this Privacy Policy, please contact us:

  • By email:
Главная > Документ

Технологические возможности ионного азотирования в упрочнении изделий из конструкционных и инструментальных сталей

М. Н. Босяков, С. В. Бондаренко, Д.В.Жук, П.А.Матусевич

СП «Авиценна Интернешнл », Республика Беларусь, г. Минск,

Ул. Сурганова, 2а, 220012, тел. +375 17 2355002

Ионно-плазменное азотирование (ИПА) – метод химико-термической обработки изделий из стали и чугуна с большими технологическими возможностями, позволяющий получать диффузионные слои нужного состава путем использования разных газовых сред, т.е. процесс диффузионного насыщения управляем и может быть оптимизирован в зависимости от конкретных требований к глубине слоя и твердости поверхности. Температурный диапазон ионного азотирования шире, чем газового и находится в пределах 400-600 0 С. Обработка при температурах ниже 500 0 С особенно эффективна при упрочнении изделий из инструментальных легированных сталей для холодной обработки, быстрорежущих и мартенситно-стареющих сталей, т.к. значительно повышаются их эксплуатационные свойства при сохранении твердости сердцевины на уровне 55-60 HRC. Упрочняющей обработке методом ИПА подвергаются детали и инструменты практически всех отраслей промышленности (рис.1).

Рис. 1. Применение ионно-плазменного азотирования для упрочнения различных изделий

В результате ИПА можно улучшить следующие характеристики изделий: износостойкость, усталостную выносливость, антизадирные свойства, теплостойкость и коррозионную стойкость. В сравнении с широко используемыми способами упрочняющей химико-термической обработки стальных деталей, такими, как цементация, нитроцементация, цианирование и газовое азотирование в печах, метод ИПА имеет следующие основные преимущества:

    более высокая поверхностная твердость азотированных деталей; отсутствие деформации деталей после обработки и высокая чистота поверхности; повышение предела выносливости и увеличение износостойкости обработанных деталей; более низкая температура обработки, благодаря чему, в стали не происходит структурных превращений; возможность обработки глухих и сквозных отверстий; сохранение твердости азотированного слоя после нагрева до 600-650 С; возможность получения слоев заданного состава; возможность обработки изделий неограниченных размеров и форм; отсутствие загрязнения окружающей среды; повышение культуры производства; снижение себестоимости обработки в несколько раз.
Преимущества ИПА проявляются и в существенном сокращении основных издержек производства. Так, например, по сравнению с газовым азотированием в печах, ИПА обеспечивает:
    сокращение продолжительности обработки в 2–5 раз, как за счет снижения времени нагрева и охлаждения садки, так и за счет уменьшения времени изотермической выдержки; снижение хрупкости упрочненного слоя; сокращение расхода рабочих газов в 20–100 раз; сокращение расхода электроэнергии 1,5-3 раза; исключение операции депассивации; снижение деформации настолько, чтобы исключить финишную шлифовку; простота и надежность экранной защиты от азотирования неупрочняемых поверхностей; улучшение санитарно-гигиенических условий производства; полное соответствие технологии всем современным требованиям по охране окружающей среды.
По сравнению с закалкой обработка методом ИПА позволяет :
    исключить деформации; увеличить ресурс работы азотированной поверхности в 2-5 раз.
Применение ИПА вместо цементации, нитроцементации, газового или жидкостного азотирования, объемной или ТВЧ закалки позволяет сэкономить основное оборудование и производственные площади, снизить станочные и транспортные затраты, уменьшить расход электроэнергии и активных газовых сред. Принцип действия ИПА заключается в том, что в разряженной (р =200-1000 Па) азотсодержащей газовой среде между катодом – деталями – и анодом – стенками вакуумной камеры – возбуждается аномальный тлеющий разряд, образующий активную среду (ионы, атомы, возбужденные молекулы), обеспечивающую формирование азотированного слоя, состоящего из внешней – нитридной зоны и располагающейся под ней диффузионной зоны. Технологическими факторами, влияющими на эффективность ионного азотирования, являются температура процесса, продолжительность насыщения, давление, состав и расход рабочей газовой смеси. Температура процесса , площадь садки, участвующей в теплообмене и эффективность теплообмена со стенкой (количество экранов) определяют мощность, необходимую для поддержания разряда и обеспечивающую нужную температуру изделий.Выбор температуры зависит от степени легированности азотируемой стали нитридообразующими элементами: чем выше степень легированности, тем выше температура. Температура обработки должна быть как минимум на 10-20 0 С ниже температуры отпуска. Длительность и температура процесса насыщения определяют глубину слоя, распределение твердости по глубине и толщину нитридной зоны. Состав насыщающей среды зависит от степени легирования обрабатываемой стали и требований к твердости и глубине азотированного слоя. Давление процесса должно быть таким, чтобы обеспечивалось плотное «облегание» разрядом поверхности изделий и получение равномерного азотированного слоя. Однако, при этом следует иметь в виду, что разряд на всех стадиях процесса должен быть аномальным, т. е. поверхность всех деталей в садке полностью должна быть покрыта свечением, а плотность разрядного тока должна быть больше нормальной плотности для данного давления с учетом эффекта нагрева газа в катодной области разряда. С появлением установок ИПА нового поколения, использующих в качестве рабочей среды регулируемые по составу смеси водорода, азота и аргона, а так же плазму «пульсирующего», а не постоянного тока, технологичность процесса ионного азотирования существенно возросла. Использование комбинированного нагрева («горячие» стенки камеры) либо усиленной тепловой защиты (тройной теплозащитный экран) наряду с возможностью независимо регулировать состав газа и давление в камере позволяют при обработке режущего инструмента избежать перегрева тонких режущих кромок в процессе разогрева садки, точно регулировать время насыщения а, соответственно, и глубину слоя, т.к. разогрев изделий возможно производить в безазотной среде, например, в смеси Ar+H 2 . Эффективная теплоизоляция в рабочей камере (тройной теплозащитный экран) позволяет обрабатывать изделия с низким удельным энергопотреблением, что позволяет свести к минимуму температурные различия внутри садки во время обработки. Об этом свидетельствует распределение микротвердости по глубине азотированного слоя для образцов, располагавшихся в разных местах садки (рис. 2).

Рис. 2. Распределение микротвердости по глубине азотированного слоя для трех образцов располагавшихся в разных местах садки.

а, в – шестерня массой 10,1 кг, 51 шт., ст – 40Х, модуль 4,5, выдержка 16 часов, Т= 530 0 С;

б, г – шестерня массой 45 кг, 11 шт., ст – 38ХН3МФА, модуль 3,25 (наружный венец)

и 7 мм (внутренний венец), выдержка 16 часов, Т=555 0 С.

Ионное азотирование – эффективный метод упрочняющей обработки деталей из легированных конструкционных сталей : шестерен, зубчатых венцов, вал-зубчатых шестерен, валов, прямозубых, конических и цилиндрических шестерен, муфт, валов-шестерен сложной геометрической конфигурации и др. Цементация, нитроцементация и ТВЧ-закалка оправдывают себя при изготовлении тяжелонагруженных деталей (зубчатые колеса, оси, валы и др.) низкой и средней точности, не требующих последующей шлифовки. Указанные виды термообработки экономически нецелесообразны при изготовлении средне- и низконагруженных высокоточных деталей, т.к. при данной обработке наблюдается значительное коробление и требуется последующая шлифовка. Соответственно, при шлифовке необходимо снимать значительную толщину упрочненного слоя. ИПА позволяет существенно снизить коробление и деформацию деталей при сохранении шероховатости поверхности в пределах Ra=0,63…1,2 мкм, что позволяет в подавляющем большинстве случаев использовать ИПА как финишную обработку. Применительно к станкостроению, ионное азотирование зубчатых колес в существенной мере снижает шумовые характеристики станков, тем самым, повышая их конкурентоспособность на рынке. ИПА наиболее эффективно при обработке крупносерийных однотипных деталей: шестерен, валов, осей, зубчатых валов, вал-зубчатых шестерен и др. Шестерни, подвергнутые плазменному азотированию, имеют лучшую стабильность размеров по сравнению с цементованными шестернями и могут использоваться без дополнительной обработки. При этом несущая способность боковой поверхности и прочность основания зуба, достигаемые с помощью плазменного азотирования, соответствуют цементованным шестерням (таб. 1).

Таблица 1

Характеристики сопротивления усталости сталей в зависимости от способов упрочнения зубчатых колес

Тип стали

Вид обработки

Предел выносливости при изгибе, МПа

Предел контактной выносливости поверхности, МПа

Твердость боковой поверхности зубъев, HV

Легированные

Упрочнение

Улучшаемые (40Х, 40ХН, 40ХФА, 40ХН2МА, 40ХМФА, 38ХМ, 38ХН3МФА, 38Х2Н2МФА, 30Х2НМ и др.)

Азотирование

Нормализованные

Плазменная или индукционная закалка

Специальные азотируемые

(38ХМЮА, 38Х2МЮА, 35ХЮА, 38ХВФЮА, 30Х3МФ и др.)

Азотирование

Легированные

Цементация и нитроцементация

При упрочняющей обработке методом ионного азотирования деталей из цементуемых, низко- и среднелегированных сталей (18ХГТ, 20ХНЗА, 20ХГНМ, 25ХГТ, 40Х, 40ХН, 40ХФА и др.) необходимо в начале проводить улучшение поковок – объемную закалку и отпуск до твердости 241-285 НВ (для некоторых сталей – 269-302 НВ), затем механическую обработку и в завершение – ионное азотирование. Для обеспечения минимальной деформации изделий перед азотированием для снятия напряжений рекомендуется проводить отжиг в атмосфере защитного газа, причем температура отжига должна быть выше температуры азотирования. Отжиг следует проводить перед точной механической обработкой. Глубина азотированного слоя, формируемого на указанных изделиях, изготовленных из сталей 40Х, 18ХГТ, 25ХГТ, 20Х2Н4А и др., составляет 0,3-0,5 мм при твердости 500-800 HV в зависимости от марки стали (рис 3). Для передач, работающих в условиях более тяжелых нагрузок, азотированный слой должен быть на уровне 0,6-0,8 мм с тонкой нитридной зоной или вообще без нее.

Рис. 3. Распределение микротвердости по глубине азотированного слоя для разных сталей

Оптимизация свойств упрочненного слоя определяется совокупностью характеристик основного материала (твердость сердцевины) и параметрами азотированного слоя. Характер нагрузки определяет глубину диффузионного слоя, тип и толщину нитридного слоя:

    износ – g’- или e-слой; динамическая нагрузка – ограниченная толщина нитридного слоя или вообще без нитридного слоя; коррозия – e-слой.
Независимое управление расходом каждого из компонентов газовой смеси, давлением в рабочей камере и вариация температурой процесса позволяют формировать слои различной глубины и твердости (рис. 4), обеспечивая тем самым стабильное качество обработки с минимальным разбросом свойств от детали к детали и от садки к садке (рис. 5).

Рис. 4. Распределение микротвердости по глубине азотированного слоя стали 40Х

1, 3, 5 – одностадийный процесс;

2,4 – двухстадийный процесс по содержанию N 2 в рабочей смеси

1,2 – T =530 0 C , t =16 часов; 3 – T =560 0 C , t =16 часов;

4 – T =555 0 C , t =15 часов, 5 – T = 460 0 С, t = 16 часов

Рис. 5. Разброс микротвердости по глубине азотированного слоя

для стали 40Х (а) и 38ХНЗМФА (б) для серийных процессов.

Ионное азотирование широко известно и как один из эффективных методов повышения износостойкости режущего инструмента, изготовленного из быстрорежущих сталей марки Р6М5, Р18, Р6М5К5, Р12Ф4К5 и др. Азотирование повышает износостойкость инструмента и его теплостойкость. Азотированная поверхность инструмента, обладающая пониженным коэффициентом трения и улучшенными антифрикционными свойствами, обеспечивает более легкий отвод стружки, а также предотвращает ее налипание на режущие кромки и образование лунок износа, что дает возможность увеличить подачу и скорость резания. Оптимальной структурой азотированной быстрорежущей стали является высокоазотистый мартенсит, не содержащий избыточных нитридов. Указанная структура обеспечивается насыщением поверхности инструмента азотом при температуре 480-520 0 С в процессе кратковременного азотирования (до 1 часа). При этом формируется упрочненный слой глубиной 20-40 мкм с микротвердостью поверхности 1000-1200 HV0,5 при твердости сердцевины 800-900 HV (рис. 6) , а стойкость инструмента после ионного азотирования увеличивается в 2–8 раз в зависимости от его типа и вида обрабатываемого материала.

Рис. 6. Структура азотированного слоя стали Р6М5 (а) и распределение микротвердости по глубине слоя (б).

Главным достоинством ионного азотирования инструмента является возможность получения только диффузионного упрочненного слоя, либо слоя с монофазным нитридом Fe 4 N (’-фаза) на поверхности, в отличие от классического газового азотирования в аммиаке, где нитридный слой состоит из двух фаз - ’+, что является источником внутренних напряжений на границе раздела фаз и вызывает хрупкость и отслаивание упрочненного слоя при эксплуатации. Ионное азотирование является также одним из основных методов увеличения долговечности штампового инструмента и литьевой оснастки из сталей 5ХНМ, 4Х5МФС, 3Х2В8, 4Х5В2ФС, 4Х4ВМФС, 38Х2МЮА, Х12, Х12М, Х12Ф1. В результате ионного азотирования можно улучшить следующие характеристики изделий:

    Ковочные штампы для горячей штамповки и пресс-формы для литья металлов и сплавов – повышается износостойкость, уменьшается прилипание металла. Пресс-формы для литья алюминия под давлением – азотированный слой препятствует прилипанию металла в зоне подачи жидкой струи, и процесс заполнения формы является менее турбулентным, что увеличивает срок службы пресс-форм, а отливка получается более высокого качества.
Существенно улучшает ионное азотирование и эксплуатационные характеристики инструмента для холодной (T < 250 0 С) обработки – вытяжка, гибка, штамповка, прессование, резка, чеканка и прошивка. Основные требования, обеспечивающие высокую работоспособность такого инструмента – высокая прочность при сжатии, износостойкость и сопротивление холодной ударной нагрузке – достигаются в результате упрочняющей обработки методом ионного азотирования. Если для инструмента используется высокохромистая сталь (12% хрома), то азотированный слой должен быть только диффузионным, если низколегированные стали – то дополнительно к диффузионному слою должен быть γ-слой – твердый и пластичный. Особенностью ионного азотирования высокохромистых сталей является то, что выбирая температуру процесса можно в широких пределах сохранять твердость сердцевины изделия, задаваемую предварительной термической обработкой (табл. 2). Для получения износостойкого поверхностного слоя при сохранении вязкой сердцевины штампа необходимо проводить вначале закалку с отпуском на вторичную твердость, размерную обработку и затем ионное азотирование. Для исключения или сведения к минимуму деформаций, возникающих при ионном азотировании штампового инструмента, перед окончательной механической обработкой рекомендуется проводить отжиг в среде инертного газа при температуре как минимум на 20 С ниже температуры отпуска. При необходимости применяют полировку азотированных рабочих поверхностей.

Таблица 2.

Характеристики легированных сталей после ионно-плазменного азотирования.

Марка стали

Твердость сердц е вины,

Температура процесса

0 С

Характеристики слоя

Тип реко-менду-емого слоя соеди-нений

Глубина, мм

тв-сть,

HV 1

Толщина слоя соед.,

Стали для горячей обработки

Стали для холодной обработки

При правильно выбранных составе и режиме нанесения износостойких покрытий эксплуатационные показатели режущего инструмента могут быть существенно улучшены. Однако вследствие неизменности свойств покрытия в пределах одного слоя на границе раздела с инструментальной основой резко изменяются физико-механический и теплофизические свойства (в первую очередь модуль упругости и коэффициент термического расширения), что приводит к образованию в покрытии высоких остаточных напряжений и снижению прочности его адгезионной связи с основой, которая является наиболее важным условием успешной эксплуатации режущего инструмента с покрытием.

Указанное, а также изменения контактных и тепловых процессов при обработке инструментом с покрытием, требуют создания между инструментальной основой и покрытием промежуточного переходного слоя, повышающего сопротивление режущего клина с покрытием, действующим нагрузкам.

Наиболее распространенный метод формирования такого слоя - ионное азотирование. При этом азотированный слой, формируемый перед нанесением покрытия, в зависимости от конкретных условий эксплуатации инструмента должен обладать определенной структурой, толщиной и микротвердостью. На практике такой обработке обычно подвергаются инструменты из быстрорежущих сталей.

Рисунок 4. Принципиальная схема вакуумно-дуговой установки для комбинированной обработки инструмента, включающей в себя ионное азотирование и нанесение покрытий: 1 - мишень; 2 - анод; 3 - экран; 4 - вакуумная камера; 5 - нейтральные атомы; 6 - ионы; 7 - электроны; 8 - обрабатываемые инструменты

Для ионного азотирования и последующего нанесения покрытия целесообразно применение установки на базе вакуумно-дугового разряда, в которой за один технологический цикл без перегрузки обрабатываемых инструментов можно реализовать все этапы комбинированного упрочнения.

Принцип работы такой установки заключается в следующем (рисунок 4).

Мишень испаряется катодными пятнами вакуумной дуги и используется в качестве катода дугового разряда. Специальный экран, расположенный между мишенью и анодом, делит камеру на две зоны, заполненные металлогазовой (слева от экрана) и газовой плазмой (справа). Этот экран непроницаем для микрокапель, нейтральных атомов и ионов металла, эмитируемых катодными пятнами на поверхности мишени. Только электроны проникают через экран, ионизуют по дороге к аноду подаваемый в камеру газ и таким путем образуют не содержащую металлических частиц газовую плазму.

Погруженные в плазму инструменты нагреваются электронами при подаче на них положительного потенциала, а при подаче отрицательного потенциала осуществляется их азотирование. По окончании азотирования экран смещается в сторону, а после того как частицы металлической мишени начинают поступать на поверхность инструмента, осуществляется синтез покрытия.

Осаждение покрытий - весьма энергоемкий процесс, сопровождающийся воздействием высокоэнергетического потока плазмы, особенно в момент ионной бомбардировки. В результате этого характеристики слоя, полученного при ионном азотировании, могут существенно изменяться.

Поэтому при оптимизации процесса комбинированной обработки быстрорежущего инструмента необходимо учитывать факторы не только процесса азотирования, но и последующего процесса нанесения износостойкого покрытия - в первую очередь время нанесения, от которого напрямую зависит толщина покрытия. С одной стороны, ее увеличение благоприятно сказывается на повышении износостойкости контактных площадок инструмента, а с другой - приводит к заметному увеличению количества дефектов в покрытии, снижению прочности сцепления покрытия с инструментальным материалом и уменьшению способности покрытия сопротивляться упругопластическим деформациям.

Важнейшими условиями комбинированной обработки являются температура и продолжительность процесса азотирования, объемная доля азота в газовой смеси с аргоном, а также время последующего процесса нанесения износостойкого покрытия. Другие факторы данного процесса: давление азота, опорное напряжение, ток дуги на катоде - влияют главным образом на характеристики покрытия и должны назначаться такими же, как и в случае осаждения традиционных покрытий.

В зависимости от типа режущего инструмента и условий его последующей эксплуатации при комбинированной обработке ее режимы обычно варьируют в следующих пределах: температура азотирования 420...510 °С; атомная доля азота N 2 в газовой смеси с аргоном 10...80 %; время азотирования 10...70 мин; давление газовой смеси ~ 9,75·10 -1 Па; время нанесения покрытий 40...80 мин.

Практика эксплуатации инструментов из быстрорежущих сталей после комбинированного упрочнения на различных операциях механообработки показывает, что наличие под покрытием азотированного слоя, в котором присутствует хрупкая нитридная зона (?- и?"-фазы), существенно ограничивает эффект от применения комбинированной обработки.

Такая структура формируется при азотировании в атмосфере чистого азота с использованием плазмы вакуумно-дугового разряда. Наличие сравнительно толстой нитридной зоны (> 0,5 мкм) при непрерывном резании (точении и сверлении) не обеспечивает существенного увеличения стойкости инструмента по сравнению с инструментом, имеющим традиционное покрытие, а при прерывистом резании (фрезеровании и долблении) часто ведет к выкрашиванию режущих кромок уже в первые минуты работы инструмента.

Введение аргона в состав азотсодержащей атмосферы при азотировании, предшествующем нанесению покрытия, позволяет управлять фазовым составом формируемого слоя и в зависимости от конкретных условий эксплуатации режущего инструмента и его служебного назначения получать необходимую структуру.

При эксплуатации быстрорежущего инструмента с комбинированной обработкой в условиях прерывистого резания оптимальной структурой азотированного слоя является вязкий и устойчивый к переменным нагрузкам твердый раствор азота в мартенсите, в котором допустимо образование незначительного количества дисперсных нитридов легирующих компонентов.

Указанная структура может быть получена при азотировании в среде, содержащей ~ 30 % N 2 и 70 % Аr.

В случае эксплуатации инструмента в условиях непрерывного резания наибольшей работоспособностью характеризуется слой, состоящий из азотистого мартенсита и специальных нитридов легирующих элементов (W, Mo, Cr, V).

Кроме того, допустимо наличие очень небольшого количества?-фазы. Данная структура повышает сопротивление поверхностного слоя инструмента термическим нагрузкам и может быть сформирована при азотировании в среде, содержащей ~ 60% N 2 и 40% Аг.

Покрытие из (Ti, Al)N, нанесенное на образцы, азотированные в разовых смесях, содержащих, %, 60 N 2 + 40 Ar и 30 N 2 + 70 Ar, отличается удовлетворительной прочностью адгезионной связи. На образцах не наблюдается ни отслаивания покрытия, ни явных трещин, которые были обнаружены на образцах, азотированных при 100 % N 2 .

Создание на контактных площадках режущего инструмента износостойкого комплекса, формируемого путем ионного азотирования с последующим нанесением покрытий в плазме вакуумно-дугового разряда, значительно влияет на интенсивность и характер изнашивания инструмента.

На рисунках 5 и 6 представлены экспериментально полученные профилограммы износа инструмента с покрытием и с комбинированной обработкой при продольном точении и торцевом фрезеровании конструкционной стали 45. Видно, что по сравнению с однослойным покрытием азотирование в сочетании с покрытием практически не изменяет характера изнашивания инструмента, но сильно снижает его интенсивность.

Для рассматриваемых условий эксплуатации отмечается невысокая эффективность инструмента с покрытием без азотирования, как при фрезеровании, так и при точении. Это связано с тем, что очень быстро разрушается покрытие и условия трения по задней поверхности все более приближаются к тем, которые характерны для инструмента без покрытия. А это означает, что увеличивается количество выделяющейся теплоты, возрастает температура вблизи задней поверхности, в результате чего в инструментальном материале начинаются необратимые процессы разупрочнения, которые и приводят к катастрофическому износу.

Исследования природы затупления инструмента с азотированием и покрытием позволяют сделать вывод, что основной вклад в снижение интенсивности изнашивания быстрорежущего инструмента вносит так называемый "краевой эффект", который состоит в следующем.

Уже в первые минуты работы инструмента, как видно из профилограмм его рабочих поверхностей (рисунки 5 и 6), покрытие разрушается на всю свою толщину на участках вблизи режущей кромки. Однако дальнейший рост очагов износа по длине и глубине сдерживается краями площадок контакта, сохраняющими износостойкую комбинацию покрытия и азотированного слоя.

Кроме того, поверхностный азотированный слой, обладающий повышенной твердостью в сочетании с высокой теплостойкостью, отличается более высоким сопротивлением микропластическим деформациям и способствует торможению процессов разупрочнения у задней поверхности.

Рисунок 5. Профилограммы изношенных участков режущих пластин из стали Р6М5 при точении стали 45: а - Р6М5 + (Ti, A1)N; б - Р6М5 + азотирование + (Ti, A1)N; режимы обработки: v = 82 м/мин; S = 0,2 мм/об; / = 1,5 мм (без СОЖ)

Рисунок 6. Профилограммы изношенных участков режущих пластин из стали Р6М5 при торцевом фрезеровании стали 45: а - Р6М5 + (Ti, Al)N; б - Р6М5 + азотирование + (Ti, Al)N; режимы обработки: v = 89 м/мин; S= 0,15 мм/зуб; В = 45 мм;

Производственный опыт показывает, что комбинированная обработка, предусматривающая предварительное азотирование и последующее нанесение покрытий, позволяет увеличить стойкость быстрорежущего инструмента самой широкой номенклатуры до 5 и до 3 раз по сравнению с инструментом соответственно без упрочнения и с традиционным покрытием.

На рисунке 7 показаны зависимости изменения износа во времени h 3 =f(T) режущих пластин из стали Р6М5, прошедших различные виды поверхностного упрочнения, при точении и торцевом фрезеровании стали 45. Видно, что стойкость до катастрофического износа инструмента при точении увеличивается в 2,6 раза, а при фрезеровании - в 2,9 раза по сравнению с инструментом с покрытием, но без азотирования.

Рисунок 7. Зависимость износа по задней поверхности инструмента из стали Р6М5 с различными вариантами поверхностной обработки от времени резания: -- *-- Р6М5 + (Ti, A1)N; --*-- Р6М5 + азотирование + (Ti-Al)N; а - точение стали 45 при v = 82 м/мин; S = 0,2 мм/об; /=1,5 мм; б - фрезерование стали 45: v = 89 м/мин; 5= 0,15 мм/зуб; В = 45 мм; t = 1,5 мм

А.В. АРЗАМАСОВ
МГТУ им. Н. Э. Баумана
ISSN 0026-0819. «Металловедение и термическая обработка металлов», № 1. 1991 г.

Разработка новых производственных процессов ионного азотирования с целью повышения износостойкости поверхности деталей, изготовленных из аустенитных сталей, является актуальной задачей

Аустенитные стали относятся к трудноазотируемым, так как их поверхностные оксидные пленки препятствуют насыщению азотом и коэффициент диффузии азота в аустените меньше, чем в феррите. В связи с этим для удаления оксидных пленок при обычном азотировании необходима предварительная обработка поверхности стали или применение депассиваторов.

Обычное азотирование большинства аустенитных сталей проводят в аммиаке при 560-600 °С в течение 48-60 ч. Однако эти режимы не позволяют получить диффузионные слои толщиной более 0,12-0,15 мм, а на стали 45Х14Н14В2М (ЭИ69) невозможно получить толщину диффузионного слоя более 0,12 мм даже при азотировании в течение 100 ч. Повышение температуры азотирования в печи выше 700 °С приводит к более полной диссоциации аммиака и, вследствие этого, к понижению активности процесса.

Как правило, после обычного азотирования ухудшается коррозионная стойкость поверхностных слоев аустенитных сталей .

Ионное азотирование аустенитных сталей способствует увеличению коэффициента диффузии азота и не требует применения депассиваторов. При этом сокращается длительность процесса и улучшается качество получаемых азотированных слоев .

Однако ионное азотирование аустенитных сталей по ранее разработанным режимам не позволяло получать диффузионные слои большой толщины даже при длительных выдержках

На основании термодинамических расчетов и экспериментальных исследований был разработан режим ионного азотирования деталей из аустенитных сталей, позволяющий получать качественные глубокие износостойкие немагнитные коррозионно-стойкие диффузионные слои в сравнительно короткое время. Оксидные пленки удалялись с поверхности деталей в процессе химико-термической обработки .

Исследовали стандартные аустенитные стали 45Х14Н14В2М (ЭИ69), 12Х18Н10Т (ЭЯ1Т); 25Х18Н8В2 (ЭИ946) и опытные высокоазотистые, разработанные Институтом металловедения и технологии металлов Болгарской Академии наук - типа Х14АГ20Н8Ф2М (0,46% N), Х18АГ11Н7Ф (0,70% N), Х18АГ12Ф (0,88% N), Х18АГ20Н7Ф (1,09% N), Х18АГ20Ф (1,02% N), Х18АГ20Ф (2,00% N) .

Исследование структуры диффузионных слоев на сталях проводили с помощью металлографического, рентгеноструктурного и микрорентгеноспектрального анализов. Установлено, что структурным критерием высокой износостойкости азотированных аустенитных сталей является наличие в диффузионном слое нитридов типа CrN. Анализ концентрационных кривых химических элементов, полученных с помощью микроанализаторов ISM-35 CF, Cameca MS-46, Camebax 23-APR-85 показал, что по сравнению с другими тяжелыми элементами хром наиболее скачкообразно распределяется по толщине слоя. В сердцевине образцов распределение хрома равномерное.

Неоднократное повторение экспериментов по исследованию распределения азота и хрома по толщине диффузионного слоя выявило синхронные скачкообразные изменения их концентраций. Кроме того, как показали послойные испытания на изнашивание, наибольшую износостойкость имеет микрозона диффузионного слоя с максимальным содержанием азота и хрома (табл. 1).

Таблица 1.

h, мкм Содержание химических элементов, % ε
C N Cr Ni
20 0,70 10,0 19,0 11,0 9,5
40 0,85 12,0 25,0 8,0 10,7
45 0,88 15,0 25,0 8,0 11,2
50 0,92 10,0 25,0 8,0 11,0
70 0,90 0 14,0 12,0 1,7
* — остальное Fe
Примечания: 1. Испытания на изнашивание проводили на машине «Шкода-Савин».
2. Относительную износостойкость определяли по отношению объёмов вытертых лунок на эталоне (стальной образец с твёрдостью 51 HRC) и исследуемом образце ε = V эт /V обр (относительная износостойкость сердцевины ε=0,08).

Дальнейшее исследование структуры азотированных аустенитных сталей с помощью микрорентгеноспектрального анализа позволило установить, что в микрозонах диффузионных слоев с повышенным содержанием азота и хрома наблюдается пониженная концентрация углерода, никеля и железа (табл. 1).

Сравнительный анализ микроструктуры слоя и сердцевины азотированной стали 45Х14Н14В2М, снятой в характеристическом хромовом К α -излучении показал, что в диффузионном слое содержится больше скоплений «белых точек» - соединений хрома, чем в сердцевине.

Послойные измерения магнитной проницаемости с помощью магнетоскопа F 1.067 и определение содержания ферритной фазы на ферритометре МФ-10И показали, что разработанный способ ионного азотирования деталей из аустенитных сталей способствует получению немагнитных диффузионных слоев (табл. 2).

Таблица 2.

Было также установлено, что азотированные стали 45Х14Н14В2М и типа Х14АГ20Н8Ф2М имеют удовлетворительную коррозионную стойкость.

По новому технологическому процессу была обработана партия шестерен, изготовленных из стали 45Х14Н14В2М. Детали соответствовали техническим требованиям. Микро- и макроструктурный анализ подтвердил наличие у шестерен качественного равномерного диффузионного слоя толщиной 270 мкм.

После длительных промышленных испытаний видимых дефектов на шестернях не обнаружено. Дальнейший контроль показал соответствие геометрических размеров шестерен технологическим требованиям, а также отсутствие изнашивания рабочих поверхностей деталей, что было подтверждено микроструктурным анализом.

Заключение. Разработанный режим ионного азотирования деталей из аустенитных сталей позволяет сократить длительность процесса более чем в 5 раз, при этом толщина слоя увеличивается в 3 раза, а износостойкость слоя - в 2 раза по сравнению с аналогичными параметрами после обычного азотирования. Кроме того, снижается трудоемкость, повышается культура производства и улучшается экологическая обстановка.

Список литературы:
1. Прогрессивные методы химико-термической обработки / Под ред. Г. Н. Дубинина, Я. Д. Когана. М.: Машиностроение, 1979. 184 с.
2. Азотирование и карбонитрирование / Р. Чаттерджи-Фишер, Ф. В. Эйзелл, Р. Хоффман и др.: Пер. с нем. М.: Металлургия, 1990. 280 с.
3. А. с. 1272740 СССР, МКИ С23С8/36.
4. Банных О. А., Блинов В. М. Дисперсионно-твердеющие немагнитные ванадийсодержащие стали. М.: Наука, 1980. 192 с.
5. Рашев Ц. В. Производство легированной стали. М.: Металлургия, 1981. 248 с.

Loading...Loading...