Сплав олова и свинца как называется. Технические параметры олова и свинца и их сплавов. Характеристики отдельных марок

ОЛОВО, СВИНЕЦ И ИХ СПЛАВЫ

§ I . СТРУКТУРА И СВОЙСТВА ОЛОВА И СВИНЦА

Олово и свинец среди других технических металлов выделяются относительно низкой температурой плавления, малой твердостью и высокой коррозионной стойкостью.

Эти свойства и предопределили основные области применения данных металлов. Свинец в чистом виде используется в химическом аппаратостроении, для кабельных оболочек, защиты от рентгеновых и γ-лучей и в других областях. Свинец и олово широко применяются для производства антифрикционных (подшипниковых) сплавов, легкоплавких сплавов и припоев, антикоррозион­ных покрытий, а также в качестве присадок к латуням, бронзам и другим сплавам.

Промышленностью выпускаются олово и свинец различной чистоты (табл. 42 и 43).Физико-химические свойства этих металлов приведены в приложении 1.

Для олова, в зависимости от температуры, характерны две кристаллические структуры (модификации). Непосредственно при затвердевании образуются кристаллы олова с тетрагональной решеткой, с периодами а=5,82 А, с -3,17 А. Эта модификация олова называется β = Sn. Олово в форме модификации устойчиво до температуры 18°, а затем переходит в новую модификацию ά = Sn с решеткой типа алмаза с периодом а=6,46 А.

Переход из одной модификации в другую сопровождается резкими объемными изменениями, что приводит к разрушению олова и превращению его в черный порошок. Необходимо заметить, что при температуре 18° и несколько более низкой скорость этого превращения весьма незначительна и ее можно практически не учитывать. Однако при минусовых температурах (особенно минус 30-40°) процесс полиморфного превращения протекает весьма интенсивно. На изделиях вначале появляются темные наросты, а затем наступает полное их разрушение. Описанное явление в практике часто называют «оловянной чумой». Олово, «заболевшее» оловянной чумой, можно восстановить только путем переплавки.

Некоторые примеси (свинец, сурьма и др.) в небольших коли­чествах резко снижают скорость превращения олова из одной модификации в другую, а три определенных концентрациях (0,5% и выше) практически полностью предохраняют от «оловянной чумы».

Обычное белое олово (β = Sn) кристаллизуется из расплава в форме крупных столбчатых кристаллов.

Самопроизвольный отжиг очень чистого олова протекает уже достаточно полно при комнатной температуре.

Очень чистый свинец при кристаллизации дает тоже крупное зерно.

Свинец не получает наклепа при холодной деформации, так как температура его рекристаллизации ниже комнатной температуры.

Технические олово и свинец содержат всегда некоторые примеси. Bce примеси в олове, кроме сурьмы практически не раст­воримы при комнатной температуре. Основной примесью в олове является свинец, который в некоторых марках, предназначенных для изготовления сплавов, допускается в значительных ко­личествах (до 1-2%).

Как уже отмечалось, чистое олово обладает хорошей химичес­кой стойкостью. Оно не окисляется на влажном воздухе, устой­чиво в органических кислотах и кипящей воде. Это с давних пор позволяет применять олово для лужения посуды, жести и других антикоррозионных покрытий. Примеси значительно снижают коррозионную стойкость олова. При наличии в олове свинца или мышьяка оно становится не пригодным для пищевой посуды и аппаратуры.

Сильные кислоты и щелочи растворяют олово. В этом отношении свинец является более стойким материалом. Особенно большой стойкостью свинец обладает в серной кислоте вследствие образования на его поверхности защитной окисной пленки. Свинец устойчив в горячей серной кислоте до концентрации 80%, в холодной - до концентрации 92%. В соляной кислоте свинец устойчив до концентрации 10%. Наиболее сильно на сви­нец действует азотная кислота.

В сухом воздухе свинец не окисляется, во влажном покры­вается тусклой окисной пленкой, обладающей хорошими защит­ными свойствам».

§ 2. СПЛАВЫ ОЛОВА И СВИНЦА

В промышленности нашли широкое применение пять групп сплавов на основе олова и свинца:

1) антифрикционные сплавы;

2) легкоплавкие сплавы;

3) припои;

4) типографские сплавы:

5) сплавы для кабельных оболочек.

Ниже рассматриваются структуры, свойства и применение этих сплавов.

1. Антифрикционные сплавы

Химический состав промышленных антифрикционных спла­вов на основе олова и свинца указан в табл. 44. Важнейшие фи­зико-механические свойства этих сплавов представлены в табл. 45.

Указанные в табл. 44 сплавы можно условно разделить на три группы:

1. Сплавы на оловянной основе (Б93, Б90, Б83).

2. Сплавы на свинцовой основе (БС, БК).

3. Сплавы на оловянно-свинцовой основе (Б16, БН, БТ, Б6).

Сплавы на основе олова

Сплав олова и свинца обладает особыми параметрами, позволяющими применять его в различных отраслях промышленного производства. Технические характеристики и физические свойства каждого металла определяют их использование для длительного хранения продуктов, пайки и обработки поверхности деталей с целью увеличения срока эксплуатации.

Сплав олова со свинцом используется для придания прочности изготавливаемым деталям

Физические свойства свинца

Свинец – продукт отходов переработки серебра – оказался очень полезным металлом в производстве

Археологические артефакты свидетельствуют о том, что этот химический элемент был известен человеку более 6000 лет назад. Его открытие связано с присутствием металла в рудах, содержащих серебро. При их выплавке материал выбрасывался в отходы, но со временем из него начали делать различные изделия: фигурки, водопроводные трубы. В настоящее время свинец применяется:

  • для производства аккумуляторов;
  • в кабельной промышленности - для создания защитной бесшовной оболочки;
  • для изготовления красок и припоев;
  • при строительстве защитных сооружений - для источников радиационного загрязнения (саркофагов);
  • для производства сплавов на его основе (баббитов);
  • для изготовления типографских составов;
  • в медицине.

Главным потребителем свинца является автомобильная промышленность, где широко применяются баббиты. Производство свинцовых стартерных аккумуляторов постоянно растет, в разработки вносятся усовершенствования.

В химической промышленности материал используют для покрытия стальных изделий: аппаратов, резервуаров, трубопроводов. Так как железо и свинец между собой не соединяются, то на изделия предварительно наносят тонкий слой расплавленного олова. Такой процесс обработки называется лужением.

В производстве применяется не только чистый свинец, но и его соединения. Например, оксид свинца используется при изготовлении стекла. Незначительная добавка соединения в материал при плавке стекла позволяет придать хрустальным изделиям прозрачность естественного минерала - горного хрусталя.

Технические параметры олова

Олово – от ложки до радиатора

Данный химический элемент известен более 3500 лет и изначально предназначался для изготовления столовых предметов. Современное потребление олова связано с консервной промышленностью.

Патент на способ хранения продуктов в жестяных банках принадлежит повару из Франции. С 1810 года человечество получило возможность долговременного хранения пищевых продуктов.

Олово является основным компонентом припоев, применяемых для пайки и лужения теплообменных аппаратов, радиаторов автомобильных двигателей, лужения медицинской и пищевой аппаратуры.

Материал используется для производства оловянной бронзы, обладающей отличными механическими, литейными, антикоррозионными свойствами. Такие сплавы применяются в деталях, предназначенных для эксплуатации в особых условиях и и при особой нагрузке.

Сплавом, обладающим низким коэффициентом трения, является баббит. Он содержит 83% олова, сурьму и медь. Его применяют в производстве подшипников. Благодаря устойчивому соединению сурьмы и меди сплав имеет высокую твердость.

Механизм работы подшипника и компоненты состава исключают возникновение механических повреждений на поверхности детали.

Олово обладает специфическими физическими свойствами:

  1. Его деформация сопровождается звуком, образованным в результате сдвига под воздействием силы.
  2. При температурах -39 °C и + 161°C олово превращается в порошок.

Истории известны случаи таких преобразований. Пуговицы, сделанные из чистого материала, на морозе теряли свою форму, а «оловянная чума» разрушала слитки металла.

Главные различия металлов и их сплавов

Еще в древности эти материалы различали только по цвету и называли белым и черным оловом. Между ними существуют различия, которые можно легко установить без дополнительных анализов.

Масса свинца выше в 1,5 раза, чем у олова. Зато олово имеет высшую твердость и трещит при деформации. Свинец легко окисляется с образованием пленки серого цвета.

Какие компоненты содержит сплав олова со свинцом, определить сложнее. Приблизительный показатель можно получить при фиксировании температуры и характера плавления соединения.

Подшипниковые материалы, содержащие олово и свинец, сплав металлов с никелем, теллуром, кальцием, обладают высокой устойчивостью к износу.

Олово и свинец прекрасно дополняют друг друга, что делает их сплав незаменимым в производстве

Припои на основе этих металлов различаются температурой плавления. Мягкие, с температурой плавления до +300 °C, содержат висмут и кадмий. Твердые (тугоплавкие) припои, переходящие в жидкое состояние при +500 °C, в своем составе имеют серебро, цинк, медь.

Для пайки сплавов с высоким содержанием олова, в которых отсутствует свинец, рекомендуется использование реактивов, разбавленной азотной кислоты. При травлении состава основа чернеет, а места с низким содержанием металла остаются светлыми, что позволяет улучшить качество пайки деталей.

Расплавленный чистый свинец не скользит по поверхности, не смачивая ее, но сплав с оловом позволяет получить качественное покрытие. Рабочая температура ванн устанавливается в зависимости от долевого содержания сплавляющего металла.

В случае необходимости уменьшения масляного зазора подшипников и улучшения условий работы деталей применяют поверхностное покрытие сплавами олова или свинца.

Для покрытия поверхности без содержания углеродов в качестве полуды применяют сплав, содержащий 90% свинца, 5% олова и 5% сурьмы. Состав сплава влияет на текучесть материала, которая варьируется в зависимости от соотношения компонентов.

Олово – мягкий и пластичный блестящий металл серебристо-белого цвета. Характеризуется хорошей коррозионной стойкостью в атмосферных условиях, растворимо в разбавленных сильных кислотах и концентрированных щелочах. Олово применяют для нанесения покрытий (лужения), получения сплавов и припоев для пайки, а также в качестве легирующих присадок.

Сплавы олова представляют собой системы олово – сурьма – медь и олово сурьма – свинец, которые содержат от 3 до 90 % олова. Их применяют как антифрикционные сплавы – баббиты для заливки подшипников и как припои. Использование свинца сокращает стоимость припоя, а введение сурьмы повышает прочность шва.

Свинец

Свинец – мягкий ковкий пластичный металл светло-серого цвета с синеватым оттенком. Значительно мягче олова, режется ножом и царапается ногтем, легко прокатывается в тонкие листы. Свинец устойчив против коррозии и воздействия ряда химических веществ, особенно серной кислоты. Выплавка свинца была одним из первых металлургических процессов. Он широко применяется в химической промышленности для защиты аппаратуры от разъедания. Из свинца изготавливают оболочки для защиты электрических кабелей, дробь, краски и свинцовые аккумуляторы.

Сплавы свинца

Сплавы свинца имеют высокую плотность и низкую механическую прочность. Они легкоплавки и устойчивы против коррозии. Сплавы с преобладанием свинца значительно дешевле, чем на основе олова. Их используют как антифрикционные сплавы – баббиты, как типографские сплавы и припои. Свинец с добавками олова и сурьмы становится значительно тверже.

Антифрикционные (подшипниковые) сплавы на основе олова или свинца с добавками сурьмы, меди, кальция и других элементов называют баббитами .

Микроструктура всех баббитов, согласно правилу Шарпи, должна слагаться минимум из двух составляющих: более мягкая и пластичная составляющая, являющаяся основой сплава, обеспечивает прирабатываемость подшипника к шейке вала, а включения более твердой составляющей понижают коэффициент трения. Твердые кристаллы, воспринимая нагрузку, вдавливаются в мягкую основу.

Баббит Б83 . Баббит Б83 – сплав на оловянной основе, содержащий 83 % Sn, 11 % Sb и 6 % Cu. Если бы сплав не содержал меди, то согласно диаграмме состояния Sn – Sb, его структура должна была бы слагаться их двух составляющих: первичных кристаллов b-фазы (твердые включения) и образовавшихся по перитектической реакции a-кристаллов твердого раствора сурьмы в олове (мягкая основа). Фаза b является раствором на базе соединения SnSb. Кристаллы твердой b-фазы хорошо полируются и, следовательно, хорошо отражают свет. Травление раствором 5 %-й HNO 3 в спирте обычно не выявляет границ между a-кристаллами и они под микроскопом сливаются в сплошной темный фон. В то же время светлые b-кристаллы, имеющие в сечении шлифа форму квадратов, треугольников и других многогранников, резко очерчены на темном фоне a-кристаллов. Кроме того, твердые b-кристаллы выдаются в рельеф над сильнее сполировывающими мягкими a-кристаллами и видны на нетравленном шлифе.

Добавка Cu усложняет структуру баббита. Состав сплава Б83 в тройной системе Sn – Sb – Cu находится в области первичной кристаллизации интерметаллида Cu 6 Sn 5 . После окончания процесса первичной кристаллизации при понижении температуры начинаются процессы кристаллизации двойной эвтектики b+Cu 6 Sn 5 , состоящей в основном из b-фазы (объемная доля Cu 6 Sn 5 в эвтектике порядка нескольких процентов). Граненые кристаллы b из эвтектики выглядят так же, как и первичные кристаллы b, в системе Sn – Sb.

При дальнейшем понижении температуры происходит перитектическое превращение: Ж p +b®a+Cu 6 Sn 5 , причем образующаяся смесь состоит в основном из a-фазы (раствора сурьмы в олове).

Первичные кристаллы Cu 6 Sn 5 образуют остов, препятствующий ликвации по плотности – всплыванию более легких b-кристаллов. Таким образом, медь добавляется, главным образом, для предотвращения ликвации по плотности. Кроме того, кристаллы Cu 6 Sn 5 , наряду с b-фазой, являются необходимыми твердыми включениями в баббите. Мягкая составляющая – смесь (a+Cu 6 Sn 5), образующаяся по перитектической и эвтектической реакциям и состоящая в основном из мягких кристаллов a-раствора сурьмы в олове.

Таким образом, сплав Б83 содержит три структурные составляющие: белые игольчатые и звездчатые первичные кристаллы Cu 6 Sn 5 , белые граненые кристаллы b-фазы из двойной эвтектики b+Cu 6 Sn 5 и смесь a+Cu 6 Sn 5 перитектического и эвтектического происхождения, в которой преобладает темная a-фаза.

Баббит Б16 , разработанный А.М. Бочваром, – сплав на свинцовой основе. Он содержит 16 % Sn, 16 % Sb и 1,7 % Cu. Благодаря меньшему содержанию олова, баббит Б16 менее дефицитен, чем баббит Б83. В четверном сплаве Б16 кристаллизация начинается с образования игл Cu 6 Sn 5 , затем кристаллизуется двойная эвтектика b+Cu 6 Sn 5 , в основном состоящая из b-фазы (SnSb), и в последнюю очередь образуется тройная эвтектика a+b+Cu 6 Sn 5 , в которой количество a+Cu 6 Sn 5 столь мало, что ее можно считать состоящей только из a-раствора всех легирующих элементов в свинце и b-фазы (SnSb). Практически в сплаве Б16 можно выделить три структурные составляющие: первичные игольчатые кристаллы Cu 6 Sn 5 , граненые кристаллы b (SnSb) и пеструю эвтектику a+b. Первичные иглы Cu 6 Sn 5 препятствуют всплыванию более легких b-кристаллов. Твердыми включениями в баббите являются b-кристаллы и Cu 6 Sn 5 , а пластичной основой – смесь a+b, в которой b-фаза светлая, а a-твердый раствор на базе свинца – темный. Пестрая структурная составляющая с ярко выраженным эвтектическим строением резко отличает микроструктуру сплава Б16 от микроструктуры баббита Б83.

Баббит БН – семикомпонентный сплав на свинцовой основе по содержанию главных легирующих элементов (10 % Sn, 14 % Sb, 1,7 % Cu) близок к баббиту Б16. Кроме указанных добавок баббит БН содержит 0,3 % Ni, 0,4 % Cd и 0,7 % As. Мышьяк и кадмий образуют твердое химическое соединение (возможно As 3 Cd 2), которое обнаруживается на микрошлифе в виде мелких серых кристаллов на фоне светлой b-фазы.

Микроструктура баббита БН содержит четыре составляющие: светлые иглы соединения, содержащего медь (возможно Cu 6 Sn 5), белые кристаллы b-фазы, серые кристаллы мышьяковистой составляющей и эвтектику, состоящую из b-фазы и a-раствора на базе свинца. В эвтектике темная фаза – это многокомпонентный раствор на основе свинца. Фаза b в баббите БН – это многокомпонентный раствор на базе соединения SnSb. Кристаллы этого соединения мельче, а объемная доля их меньше, чем в сплаве Б16, что обусловливает повышенную сопротивляемость усталости сплава БН.

Баббит БС6 – сплав на свинцовой основе, содержащий 6 % Sn, 6 % Sb и 0,2 % Cu. В отличие от баббита Б16 в нем значительно меньше олова и сурьмы, и поэтому в баббите БС6первично кристаллизуется не b-фаза (SnSb), а a-раствор на базе свинца. Структура баббита БС6 слагается из двух составляющих – темных первичных дендритов a-раствора олова и сурьмы в свинце и эвтектики (a+b). В противоположность другим баббитам, в которых изолированные твердые кристаллы распределены в мягкой основе, баббите БС6 мягкие кристаллы раствора на базе свинца окружены более твердой эвтектикой. Благодаря отсутствию хрупких первичных кристаллов химических соединений, сплав БС6 обладает большим сопротивлением усталости, чем баббиты Б83, Б16 и БН. Он дешевле этих баббитов, так как содержит меньше олова. Баббит БС6 широко применяют в автомобильной промышленности в виде биметаллических вкладышей, состоящих из стальной ленты и тонкого слоя баббита.

Баббит БКА . В отличие от рассмотренных выше баббитов на свинцовой основе, содержащих в качестве главных присадок Sb, Sn и Cu, сплав марки БКА состоит из свинца с добавками 1 % Ca, 0,8 % Na и 0,1 % Al и называется кальциевым баббитом. Этот сплав является основным для подшипников скольжения железнодорожных вагонов. От баббитов на основе Sn и свинцовооловянных баббитов кальциевый баббит отличается более высокой температурой плавления и сохранением твердости до более высоких температур при разогреве подшипника.

Натрий в сплаве БКА полностью находится в твердом растворе на основе свинца. Кальций образует со свинцом соединение Pb 3 Ca; в твердом свинце растворимы лишь сотые доли процента Ca. Микроструктура кальциевого баббита слагается из двух составляющих: первичных белых дендритов соединения Pb 3 Ca (твердые включения) и образующихся по перитектической реакции темных кристаллов раствора Na и Ca в Pb (пластичная основа). Т.к. свинцовый раствор очень мягок, то при полировке он размазывается и трудно выявить границы между кристаллами пластичной основы, которая под микроскопом дает сплошной темный фон. Шлифы из кальциевого баббита сильно окисляются, поэтому их просматривают в свежеполированном состоянии.

Оловянно-свинцовые припои

Сплавы двойной эвтектической системы Pb-Sn относятся у группе широко используемых в технике мягких припоев . Припои ПОС30, ПОС61 и ПОС90 содержат, соответственно, около 30, 61 и 90 % Sn, остальное – свинец.

Структура доэвтектического сплава ПОС30 состоит из темных первичных дендритов раствора Sn в Pb (a) и эвтектики (a+b). Припой ПОС61 содержит практически одну структурную составляющую – эвтектику (a+b). Это – самый легкоплавкий из оловянно-свинцовых припоев, применяющийся для пайки электро- и радиоаппаратуры, где недопустим перегрев. Структура припоя ПОС90 состоит из светлых первичных дендритов раствора Pb в Sn (b) и эвтектики (a+b). Этот припой содержит мало Pb, и поэтому применяется для пайки пищевой посуды.

Цинковые сплавы

Наиболее широко применяемые цинковые сплавы относятся к тройной системе Zn – Al – Cu.

Сплав ЦАМ 10-5 . Антифрикционный сплав на цинковой основе ЦАМ 10-5 содержит в среднем 10 % Al, 5 % Cu и 0,4 % Mg. Сплав находится в области первичной кристаллизации a-фазы недалеко от линии кристаллизации двойной эвтектики (a+e). Фаза a представляет собой твердый раствор цинка и, частично, меди в алюминии. Фаза e - соединение электронного типа переменного состава с характерной электронной концентрацией 7/4, отвечающей составу CuZn 3 . В тройной системе Zn – Al – Cu в e-фазе растворено некоторое количество алюминия. Структура сплава ЦАМ 10-5 слагается из трех составляющих: относительно небольшого количества светлых первичных дендритов алюминиевого a-раствора, двойной эвтектики (a+e) и тройной эвтектики (h+a+e). Фаза h – твердый раствор Al и Cu в Zn. Тройную эвтектику легко отличить от двойной, т.к. она значительно темнее и имеет более дисперсное строение. Кроме того, колонии двойной эвтектики, образуясь вслед за первичными кристаллами, окружают их, а тройная эвтектика располагается между колониями двойной эвтектики.

Сплав ЦА4М3 . Этот сплав содержит 4 % Al, 3 % Cu и 0,04 % Mg и широко применяется для литья под давлением в автомобилестроении, для отливки деталей бытовой техники и в других отраслях промышленности. Основными структурными составляющими сплава ЦА4М3 должны быть двойная (h+e) и тройная (h+a+e) эвтектики. Кроме того, наиболее вероятно обнаружить светлые первичные кристаллы e-фазы.

Порядок проведения работы

1. Просмотреть шлифы при увеличениях 100-200, определить структурные составляющие и схематично зарисовать микроструктуру.

2. Под каждой микроструктурой подписать марку сплава, средний химический состав, увеличение микроскопа и стрелками указать структурные составляющие.

3. Рядом с микроструктурами начертить соответствующие диаграммы состояния, необходимые для анализа структурных составляющих.


Лабораторная работа № 7


Похожая информация.


Свинцово-оловянный сплав Теrne - Свинцово-оловянный сплав .

Сплав свинца, содержащего от 3 до 15 % Sn, используемый для горячего покрытия окунанием стальных листов или пластин. Покрытия являются гладкими и темными по внешнему виду (terne - тусклый или матовый (фр.)). Применяется для повышения коррозионной стойкости и улучшения способности к деформированию, пайке или окраске.

(Источник: «Металлы и сплавы. Справочник.» Под редакцией Ю.П. Солнцева; НПО "Профессионал", НПО "Мир и семья"; Санкт-Петербург, 2003 г.)


Смотреть что такое "Свинцово-оловянный сплав" в других словарях:

    - (a. zinc lead industry; н. Blei Zink Industrie; ф. industrie du plomb et du zinc; и. industrie de plomo y cinc) подотрасль цветной металлургии, объединяющая предприятия по добыче, переработке свинцово цинковых руд, получению металлич.… … Геологическая энциклопедия

    Теrne. См. Свинцово оловянный сплав. (Источник: «Металлы и сплавы. Справочник.» Под редакцией Ю.П. Солнцева; НПО Профессионал, НПО Мир и семья; Санкт Петербург, 2003 г.) …

    Олово - (Tin) Металл олово, добыча и месторождения олова, производство и применение металла информация о металле олово, свойства олова, месторождения и добыча олова, производство и применение металла Содержание Определение термина История… … Энциклопедия инвестора

    Металл - (Metal) Определение металла, физические и химические свойства металлов Определение металла, физические и химические свойства металлов, применение металлов Содержание Содержание Определение Нахождение в природе Свойства Характерные свойства… … Энциклопедия инвестора

    50 Индий ← Олово → Сурьма … Википедия

    Олово / Stannum (Sn) Атомный номер 50 Внешний вид простого вещества серебристо белый мягкий, пластичный металл (β олово) или серый порошок (α олово) Свойства атома Атомная масса (молярная масса) 118,71 а. е. м. (г/моль) … Википедия

    Олово / Stannum (Sn) Атомный номер 50 Внешний вид простого вещества серебристо белый мягкий, пластичный металл (β олово) или серый порошок (α олово) Свойства атома Атомная масса (молярная масса) 118,71 а. е. м. (г/моль) … Википедия

    Bronze Бронза. Медно оловянный сплав с малыми примесями других элементов типа цинка и фосфора или без примесей. Расширенный ряд бронз включает сплавы на медной основе, содержащие значительно меньшее количество олова, чем других легирующих… … Словарь металлургических терминов

    Свинец - (Lead) Металл свинец, физические и химические свойства, реакции с другими элементами Информация о металле свинец, физические и химические свойства металла, температура плавления Содержание Содержание Происхождение названия Физические свойства… … Энциклопедия инвестора

Loading...Loading...